DOI QR코드

DOI QR Code

Design and Implementation of The Vehicle Tracking Applications using Geospatial Query

공간 정보 질의를 이용한 차량 추적 애플리케이션의 설계 및 구현

  • Ilham, Anugrah Moch (Department of Eco-Friendly Offshore Plant FEED Engineering, Changwon National University) ;
  • Jung, Jin-uk (Department of Electronic Engineering, Changwon National University) ;
  • Jin, Kyo-Hong (Department of Electronic Engineering, Changwon National University) ;
  • Hwang, Min-Tae (Department of Information & Communication Engineering, Changwon National University)
  • Received : 2019.05.08
  • Accepted : 2019.05.20
  • Published : 2019.06.30

Abstract

In recent years, many public safety systems in the smart city are developed. These systems are taking responsibility to make a safe and comfortable city. In this paper, we propose vehicle tracking systems include a public safety system that enables the policeman to track the stolen vehicles more efficiently by providing the vehicle information in real time. When a vehicle is stolen, the vehicle owner can send a user emergency request. Then, the public safety server which supported by a geospatial query technique will give information such as time, distance, and routes to a policeman who is closest to the location of the vehicle to catch the thief. 300 simulations were performed to evaluate the performance of the system. We found that the average of times required when vehicle owner send a user emergency message on user application until policeman obtain a vehicle tracking request on police application below 1.2 seconds.

공공 안전은 스마트 시티(Smart City)의 주요 목표 중 하나이다. 본 논문에서는 공공 안전에 도움을 줄 수 있는 차량 추적 시스템을 제안하고서 관련 애플리케이션을 설계 및 구현하였다. 제안하는 차량 추적 시스템의 목적은 경찰에게 도난 차량의 위치 정보를 실시간으로 제공해서 보다 효율적으로 도난 차량을 추적하는 것이다. 차량 소유자가 차량 추적을 요청하면, 이 요청을 수신한 공공 안전 서버 프로그램은 공간 정보 질의(Geospatial Query) 기법을 사용하여 도난 차량과 가장 가까운 경찰을 찾아 도난 차량의 위치와 시간, 거리 및 경로와 같은 정보들을 제공한다. 구현한 시스템의 유효성을 입증하기 위해 타임 스탬프(Time Stamp)를 이용한 트랜잭션 시뮬레이션을 수행하였으며, 이 시뮬레이션을 통해 1.2초 이내의 빠른 시간 내에 차량 소유자의 요청이 경찰에게 전달되는 것을 확인할 수 있었다.

Keywords

HOJBC0_2019_v23n6_637_f0001.png 이미지

Fig. 1 The block diagram of the proposed vehicle tracking system

HOJBC0_2019_v23n6_637_f0002.png 이미지

Fig. 2 Flowchart of vehicle location data processing program

HOJBC0_2019_v23n6_637_f0003.png 이미지

Fig. 3 The three tables in anti-theft database

HOJBC0_2019_v23n6_637_f0004.png 이미지

Fig. 4 Flowchart of public safety server program

HOJBC0_2019_v23n6_637_f0005.png 이미지

Fig. 5 The four tables in public safety database

HOJBC0_2019_v23n6_637_f0006.png 이미지

Fig. 6 The screenshots for the vehicle monitoring(a) and SOS request activity(b) in the user application

HOJBC0_2019_v23n6_637_f0007.png 이미지

Fig. 7 The screenshots in the police application when receiving Vehicle Tracking Request Message(a) and tracking a stolen vehicle activity(b)

HOJBC0_2019_v23n6_637_f0008.png 이미지

Fig. 8 The average time required to send a User Emergency Message

References

  1. J. Jiong, J. Gubbi, S. Marusic, and M. Palaniswarni. (2014, January). An Information Framework for Creating a Smart City Through Internet of Things. IEEE Internet of Things Journal [Online]. 01(02), pp. 112-121. Available : https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6702523. https://doi.org/10.1109/JIOT.2013.2296516
  2. Republika. Ministry launches 100 smart city movement [Internet]. Available: https://www.republika.co.id/berita/en/%20national-politics/17/05/22/oqd3xr414-ministry-launches-100-smart-city-movement.
  3. Ministry of Communication and Information Technology. Gerakan menuju 100 smart city [Internet]. Available: https://aptika.kominfo.go.id/2018/11/gerakan-menuju-100-smart-city.
  4. Bandung Government. Masterplan bandung smart city [Internet]. Available: https://smartcity.bandung.go.id/smartcity/eksternal/show/130.
  5. Bandung Command Center. Panic Button [Internet]. Available: https://commandcenter.bandung.go.id/layanan/panic-button
  6. Jawa Pos Multimedia. 2018 Tingkat kriminalitas Bandung tertinggi di Jawa Barat [Internet]. Available: https://www.jawapos.com/jpg-today/28/12/2018/sepanjang-2018-tingkat-kriminalitas-bandung-tertinggi-di-jawa-barat.
  7. M. Mendoca, B. Moreira, J. Coelho, N. Cacho, F. Lopes, E. Cavalcante, A. Dias, J . Ribeiro, E. Loiola, D. Estaregue, and B. Moura. (2016, October). Improving public safety at fingertips: A smart city experience. IEEE International Smart Cities Conference [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7580772.
  8. IBM. IBM Intelegent Operation Center [Internet]. Available: https://www.ibm.com/us-en/marketplace/city-insights.
  9. P. Erickson, A. Weinert, P. Breimyer, M. Samperi, J. Huff, C. Parra, and S. Miller, "Designing public safety mobile applications for disconnected, interrupted, and low bandwidth communication environments," in Proceedings of the 2013 IEEE International Conference on Technologies for Homeland Security. USA: IEEE, pp. 790-796, 2013.
  10. S. D. Park, "Development of Safety Map Application for Local Residents," Journal of The Korea Institute of Information and Communication Engineering, vol. 23, no. 3, pp. 229-304, Jan. 2019.
  11. M. F. Saaid, M. A. Kamaludin, and M. S. Ali, "Vehicle location finder using Global position system and Global System for Mobile," in Proceeding of the 5th IEEE Control and System Graduate Research Colloquium, Malaysia, pp. 279-284, 2014.
  12. K. Mukherjee. (2014, December). Anti-theft vehicle tracking and immobilization system. International Conference on Power, Control and Embedded Systems (ICPCES) [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7062814.
  13. K. A. Mamun, and Z. Ashraf. (2016, May). Anti-theft vehicle security system with preventive action. 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) [Online]. pp. 1-6. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7476241.
  14. A. Wu. (2017, November). The design of anti-theft device for vehicle based on GSM. International Conference on Smart Grid and Electrical Automation (ICSGEA) [Online]. pp. 384-386. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8104408.
  15. B. K. Park, H.R. Choi, C.S. Kim, K.B. Lee, and M.S. Park, "Development of Simulation System for Real-Time Location Tracking in Global Shipping Logistic," Journal of The Korea Institute of Information and Communication Engineering, vol. 19, no. 5, pp. 1235-1242, May. 2015. https://doi.org/10.6109/jkiice.2015.19.5.1235
  16. J.S. Lee, M.H. Jeon, K.W. Cho, and C.H. Oh, "Traffic Information Extraction and Application When Utilizing Vehicle GPS Information," Journal of The Korea Institute of Information and Communication Engineering, vol. 17, no. 12, pp. 2960-2965, Dec. 2013. https://doi.org/10.6109/jkiice.2013.17.12.2960
  17. Z. Liu, A. Zhang, and S. Li, "Vehicle anti-theft tracking system based on Internet of things," in Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, China, pp. 48-52, 2013.
  18. M. Viska, S. Rahmany, and T. F. Abidin. (2018, September). Anti-theft vehicle monitoring and tracking android application using firebase as web service. International Conference on Electrical Engineering and Informatics [Online]. pp. 72-77. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8548842.
  19. Suhag, Ravi. ATLAS: GO-JEK's real-time geospatial visualization platform [Internet]. Available: https://blog.gojekengineering.com/atlas-go-jeks-real-time-geospatial-visualization-platform-1cf5e16814c5.
  20. MongoDB Inc, Geospatial Query [Internet]. Available: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/#overview.
  21. StatCounter. Mobile Operating System Market Share Indonesia [Internet]. Available: http://gs.statcounter.com/os-market-share/mobile/indonesia.