DOI QR코드

DOI QR Code

2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications

  • Choi, Tae-Il (Dept. of Welfare Administration, Kwangju Women's University) ;
  • Yoon, Joong-Han (Division of Smart Electrical and Electronic Engineering, Silla University)
  • 투고 : 2019.04.25
  • 심사 : 2019.05.04
  • 발행 : 2019.06.30

초록

본 논문에서는 WLAN과 WiMAX 대역에서 동작 가능하도록 삼중대역 안테나를 설계 제작 및 측정하였다. 마이크로스트립 선로를 사용하여 급전하였으며 패치면에 두 개의 분기된 선로를, 그리고 접지면에 사각슬릿을 삽입하여 삼중대역 특성을 갖도록 설계하였다. 그리고 임피던스 대역폭의 특성을 개선하기 위해 접지면에 수직 스트립 선로를 추가하였다. 제안된 안테나는 유전율 4.4 그리고 두께 1.0mm인 유전체 기판 위에 $18.0mm(W1){\times}37.3mm$ (L4+L5+L7) 의 크기로 설계되었다. 제작 및 측정 결과로부터 2.4/2.5 GHz에서는 480 MHz (2.32~2.80 GHz), 3.5 GHz 대역에서는 810 MHz (3.22 ~ 4.03 GHz), 그리고 5.0 GHz 대역에서는 1,820 MHz (5.05 ~ 6.87 GHz)의 대역폭을 얻었다. 또한 측정된 3D 방사패턴을 제시하였으며 요구되는 주파수 대역에서 측정된 이득값을 제시하였다.

In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

키워드

HOJBC0_2019_v23n6_740_f0001.png 이미지

Fig. 1 The geometry of the proposed WLAN/WiMAX antenna

HOJBC0_2019_v23n6_740_f0002.png 이미지

Fig. 2 Return loss characteristic of the effect of the W4.

HOJBC0_2019_v23n6_740_f0003.png 이미지

Fig. 3 Return loss characteristic of the effect of the L3.

HOJBC0_2019_v23n6_740_f0004.png 이미지

Fig. 4 Return loss characteristic of the effect of the L5.

HOJBC0_2019_v23n6_740_f0005.png 이미지

Fig. 5 Return loss characteristic according to the withand with out slit in the ground.

HOJBC0_2019_v23n6_740_f0006.png 이미지

Fig. 6 The surface current density of proposed antenna (a) 2.59 GHz, (b) 3.33 GHz, and (c) 5.51 GHz.

HOJBC0_2019_v23n6_740_f0007.png 이미지

Fig. 7 Fabricated of propose antenna (a) Front view, (b) Back view.

HOJBC0_2019_v23n6_740_f0008.png 이미지

Fig. 8 The simulated and measured return loss results

HOJBC0_2019_v23n6_740_f0009.png 이미지

Fig. 9 3D radiation pattern of 2.4 GHz

HOJBC0_2019_v23n6_740_f0010.png 이미지

Fig. 10 3D radiation pattern of 3.6 GHz

HOJBC0_2019_v23n6_740_f0011.png 이미지

Fig. 11 3D radiation pattern of 5.20 GHz

HOJBC0_2019_v23n6_740_f0012.png 이미지

Fig. 12 3D radiation pattern of 5.80 GHz

HOJBC0_2019_v23n6_740_f0013.png 이미지

Fig. 13 Measured peak and average gains of the designed antenna

Table. 1 Results of simulation : W4

HOJBC0_2019_v23n6_740_t0001.png 이미지

Table. 2 Results of simulation : L3

HOJBC0_2019_v23n6_740_t0002.png 이미지

Table. 3 Results of simulation : L5

HOJBC0_2019_v23n6_740_t0003.png 이미지

Table. 4 Results of simulation with/without slit

HOJBC0_2019_v23n6_740_t0004.png 이미지

Table. 5 Parameters of designed antenna

HOJBC0_2019_v23n6_740_t0005.png 이미지

Table. 6 Results of measured return loss

HOJBC0_2019_v23n6_740_t0006.png 이미지

Table. 7 Results of measured gain

HOJBC0_2019_v23n6_740_t0007.png 이미지

참고문헌

  1. B. H. Jeong, S. H. Jang, S. L. Yoon, and D. H. Kim, "Development direction of WLAN technology treads to IEEE 802.11ax standardization," Electronics and Telecommunications Trends, vol. 27, no. 2, pp. 1-10, 2012.
  2. J. H. Son, U. J. An, J. J. Ko, and K. S. Kwak, "Recent tread to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, pp. 3-9, 2016.
  3. World Wide Interoperability for microwave access forum or WiMAX forum [Internet]. Available: http://www.wimaxfroum.org.
  4. D. S. Kim, and J. H. Yoon, "Design and manufacture of modified circular ring antenna for WLAN/WiMAX applications," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no. 2, pp. 268-275, Feb. 2014. https://doi.org/10.6109/jkiice.2014.18.2.268
  5. J. H. Yoon, S. J. Ha, and T. C. Rhee, "A novel monopole antenna with two arc-shaped strips for WLAN/WiMAX applications," Journal of Electromagnetic engineering and Science, vol. 15, no. 1, pp. 6-13, Jan. 2015. https://doi.org/10.5515/JKIEES.2015.15.1.6
  6. W. S. Kim, and J. H. Yoon, "A design for a CPW-fed monopole antenna with two modified half circular rings for WLAN/WiMAX operations," Journal of Information and Communication Convergence Engineering, vol. 13, no. 3, pp. 159-166, Sep. 2015. https://doi.org/10.6109/jicce.2015.13.3.159
  7. L Li. X. Zhang, X. Yin, and L. Zhou, "A compact triple band printed monopole antenna for WLAN and WiMAX applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1853-1855, 2016. https://doi.org/10.1109/LAWP.2016.2539358
  8. A. K. Gautam, L. Kumar, B. K. Kanaujia, and K. Rambabu, "Design of compact F-shaped slot triple band antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1101-1105, Mar. 2016. https://doi.org/10.1109/TAP.2015.2513099
  9. M. M. Fakharian, and P. Rezaei, "Design of split ring antennas for WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 58, no. 9, pp. 2117-2122, Sep. 2016. https://doi.org/10.1002/mop.29996
  10. L. Chouti, I. Messaoudene, T. A. Denidni, and A. Benghalia, "Triple band CPW-fed monopole antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, vol. 69, pp. 1-7, 2017. https://doi.org/10.2528/PIERL17031910
  11. M. O. Sallam, S. M. Kandil, V. Vlosik, G. A. E. Vandenboshch, and E. Soliman, "Wideband CPW-fed flexible bow tie slot antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4274-4277, Aug. 2017. https://doi.org/10.1109/TAP.2017.2710227
  12. B. Mohamadzade, and A. Rezaee, "Compact and braodband dual sleeve monopole antenna for GSM, WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 59, no. 6, pp. 4274-4277, Jun. 2017.
  13. J. H. Yeo, and J. L. Lee, "Compact dual band half ring shaped bent slot antenna for WLAN and WiMAX applications," Journal of Information and Communication Convergence Engineering, vol. 15, no. 4, pp. 199-204, Dec. 2017. https://doi.org/10.6109/JICCE.2017.15.4.199
  14. T. Ali, and R. C. Biradar, "A triple band highly miniaturized antenna for WLAN/WiMAX applications," Microwave and Optics Technology Letters, vol. 60, no. 1, pp. 466-471, Jan. 2018. https://doi.org/10.1002/mop.30993
  15. P. Surendrakumar, and B. C. Mohan, "A Triple-Frequency, Vertex-Fed Antenna for WLAN\/WiMAX Applications," IEEE Antennas and Propagation Magazine, vol. 60, no. 3, pp. 101-106, Jun. 2018. https://doi.org/10.1109/map.2018.2818007
  16. S. Ullah, S. Ahmad, B. Khan, and J. A. Flint, "A multi-band switchable antenna for Wi-Fi, 3G Advanced, WiMAX, and WLAN wireless applications," International Journal of Microwave and Wireless Technologies, vol. 10, no. 8, pp. 991-997, Oct. 2018. https://doi.org/10.1017/S1759078718000776
  17. Ansoft High Frequency Structure Simulator (HFSS) Version 10.0, Ansoft Corporation, 2005.