DOI QR코드

DOI QR Code

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable

송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가

  • Cho, Hui Jae (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, You Sub (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Yong Chan (Creative Future Laboratory, KEPCO Research Institute) ;
  • Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
  • 조희재 (충남대학교 신소재공학과) ;
  • 김유섭 (충남대학교 신소재공학과) ;
  • 정용찬 (전력연구원 창의미래연구소) ;
  • 이수열 (충남대학교 신소재공학과)
  • Received : 2019.04.27
  • Accepted : 2019.06.14
  • Published : 2019.06.27

Abstract

Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

Keywords

References

  1. S. M. Fikke, J. E. Kristjansson and B. E. K. Nygaard, Atmospheric Icing of Power Networks, p.2, M. Farzaneh, Springer Science & Business Media, Germany (2008).
  2. J. H. Lee, H. Y. Jung, J. R. Koo, Y. J. Yoon and H. J. Jung, J. Electr. Eng. Technol., 12, 969 (2017). https://doi.org/10.5370/JEET.2017.12.2.969
  3. J. L. Larforte, M. A. Allaire and J. Laflamme, Atmos. Res., 46, 143 (1998). https://doi.org/10.1016/S0169-8095(97)00057-4
  4. K. J. Zhu, D. J. Fu, J. C. Wang and N. Sun, Electrical Equipment, 6, 969 (2008).
  5. W. K. Kim, S. J Cho and J. H. Shim, The Korean Inst. of Electr. Eng., 36, 673 (2005).
  6. J. Ayres, W. H. Simendinger and C. M. Balik, J. Coat. Technol. Res., 4, 463 (2007). https://doi.org/10.1007/s11998-007-9054-8
  7. Y. Tak, J. Korean Ind. Eng. Chem., 17, 335 (2006).
  8. C. R. F. Azevedo and T. Cescon, Eng. Failure Anal., 9, 645 (2002). https://doi.org/10.1016/S1350-6307(02)00021-3
  9. J. K. Zhang, G. H. Chen and J. Q. Wang, Corros. Prot., 31, 581 (2010).
  10. J. K. Zhang, G. H. Chen and J. Q. Wang, The Chin. J. Nonferrous Met., 21, 411 (2011).
  11. L. L. Cao, A. K. Jones, V. K. Sikka, J. Z. Wu and D. Gao, Langmuir, 25, 12444 (2009). https://doi.org/10.1021/la902882b
  12. T. Bharathidasan, S. V. Kumar, M. S. Bobji, R. P. S. Chakradhar and B. J. Basu, Appl. Surf. Sci., 314, 241 (2014). https://doi.org/10.1016/j.apsusc.2014.06.101
  13. J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang and Y. Song, Appl. Phys. Lett., 101, 111603 (2012). https://doi.org/10.1063/1.4752436
  14. S. A. Kulinich, S. Farhadi, K. Nose and X. W. Du, Langmuir, 27, 25 (2011). https://doi.org/10.1021/la104277q
  15. M. E. Schrader, Langmuir, 11, 3585 (1995). https://doi.org/10.1021/la00009a049