DOI QR코드

DOI QR Code

초음파 조사에 의한 항생제 내성균 불활성화 및 감수성 변화

Comparison of inactivation and sensitivity of antibiotic resistance bacteria by ultrasound irradiation

  • 이성훈 (중앙대학교, 토목공학과) ;
  • 남성남 (중앙대학교, 토목공학과) ;
  • 오재일 (중앙대학교, 토목공학과)
  • Lee, Sunghoon (Department of Civil and Environmental Engineering, Chung-Ang University) ;
  • Nam, Seong-Nam (Department of Civil and Environmental Engineering, Chung-Ang University) ;
  • Oh, Jeill (Department of Civil and Environmental Engineering, Chung-Ang University)
  • 투고 : 2019.04.16
  • 심사 : 2019.05.10
  • 발행 : 2019.06.15

초록

The 20-kHz ultrasonic irradiation was applied to investigate bacterial inactivation and antibiotic susceptibility changes over time. Applied intensities of ultrasound power were varied at 27.7 W and 39.1 W by changing the amplitude 20 to 40 to three bacteria species (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). By 15-min irradiation, E. coli, a gram-negative bacterium, showed 1.2- to 1.6-log removals, while the gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus, showed below 0.5-log removal efficiencies. Antibiotic susceptibility of penicillin-family showed a dramatic increase at E. coli, but for other antibiotic families showed no significant changes in susceptibility. Gram-positive bacteria showed no significant differences in their antibiotic susceptibilities after ultrasound irradiation. Bacterial re-survival and antibiotic susceptibility changes were measured by incubating the ultrasound-irradiated samples. After 24-hour incubation, it was found that all of three bacteria were repropagated to the 2- to 3-log greater than the initial points, and antibiotic inhibition zones were reduced compared to ones of the initial points, meaning that antibiotic resistances were also recovered. Pearson correlations between bacterial inactivation and antibiotic susceptibility showed negative relation for gram-negative bacteria, E. coli., and no significant relations between bacterial re-survival and its inhibition zone. As a preliminary study, further researches are necessary to find practical and effective conditions to achieve bacteria inactivation.

키워드

참고문헌

  1. Al-Badaii, Fawaz, and Mohammad Shuhaimi-Othman. (2014). Water pollution and its impact on the prevalence of antibiotic-resistant E. coli and total coliform bacteria: A study of the Semenyih river, Peninsular Malaysia, Water Qual. Expo. Heal., 7(3), 319-330. https://doi.org/10.1007/s12403-014-0151-5
  2. Barancheshme, F and Munir, M. (2018). Strategies to combat antibiotic resistance in the wastewater treatment plants, Front. Microbiol., 8, 2603. https://doi.org/10.3389/fmicb.2017.02603
  3. Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu O.D., and Piddock, L.J.V. (2015). Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13(1), 42-51. https://doi.org/10.1038/nrmicro3380
  4. Bouki, Chryssa, Danae Venieri, and Evan Diamadopoulos. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review, Ecotoxicol. Environ. Saf., 91, 1-9. https://doi.org/10.1016/j.ecoenv.2013.01.016
  5. Burgos, J., Ordonez, J. A., and Sala, F. (1972). Effect of ultrasonic waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores, Appl. Environ. Microbiol., 24(3), 497-498. https://doi.org/10.1128/AEM.24.3.497-498.1972
  6. Calero-Caceres, W., Melgarejo, A., Colomer-Lluch, M., Stoll, C., Lucena, F., Jofre, J., and Muniesa, M. (2014). Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions, Environ. Sci. Technol., 48(13), 7602-7611. https://doi.org/10.1021/es501851s
  7. Chan, M. World Health Organization. (2015). Global action plan on antimicrobial resistance, 9789241509763, 1-5.
  8. Florez-Acosta, O. A., Giraldo-Aguirre, A. L., Serna-Galvis, E. A., Torres-Palma, R. A., and Silva-Agredo, J. (2016). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water, Ultrason. Sonochem., 31, 276-283. https://doi.org/10.1016/j.ultsonch.2016.01.007
  9. Fahrenfeld, N. and Bisceglia, K.J. (2016). Emerging investigators series: Sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: Urban sewer epidemiology, Environ. Sci.: Water Res. Technol., 2(5), 788-799. https://doi.org/10.1039/C6EW00158K
  10. Foladori, P., Laura, B., Gianni, A., and Giuliano, Z. (2007). Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry-Fecal indicators, wastewater and activated sludge, Water Res., 41(1), 235-243. https://doi.org/10.1016/j.watres.2006.08.021
  11. Gao, S., Lewis, G. D., Ashokkumar, M., and Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism, Ultrason. Sonochem., 21(1), 454-460. https://doi.org/10.1016/j.ultsonch.2013.06.007
  12. Jean, B., Melvin, P., Geroge, M., Stephen, G., James, S., Brandi, L., Amy, J., Tony, M., Robin, P., Sandra, S., Michael, S., Jana, M., Maria, M., John, D., and Barbara, L. (2017). Performance standards for antimicrobial susceptibility testing, Clinical and laboratory standards institute, USA, 32-64.
  13. Jim, O.N. (2016). Tackling drug-resistant infections globally: final report and recommendations, Rev. Antimicrob. Resist., 1(1), 11-15.
  14. Joyce, E., S. S. Phull, J. P. Lorimer, and T. J. Mason. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured bacillus species, Ultrason. Sonochem., 10(6), 315-318. https://doi.org/10.1016/S1350-4177(03)00101-9
  15. Kim, D., Song, S., and Park, Y. (2010). A comparison of single disinfection process for inactivation of E. coli, Korean Soc. Biotechnol. Bioeng. J., 25(1), 25-32.
  16. Kimura, Takahide, Takashi, S., Jean, M., Hajime, S., Mitsue, F., Shigeyoshi, I., and Takashi, A. (1996). Standardization of ultrasonic power for sonochemical reaction, Ultrason. Sonochem., 3(3), S157-S161. https://doi.org/10.1016/S1350-4177(96)00021-1
  17. Larsson, D. G. J., Andremont, A., Bengtsson-Palme, J., Brandt, K. K., de Roda Husman, A. M., Fagerstedt, P., Fick, J., Flach, C.F., Gaze, W.H., Kuroda, M., Kvint, K., Laxminarayan, R., Manaia, C.M., Nielsen, K.M., Plant, L., Ploy, M.C., Segovia, C., Simonet, P., Smalla, K., Snape, J., Topp, E., Hengel, A.J., David, W.V.J., Virta, P.J.M, Wellington, E.M., and Wernersson, A.S. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance, Environ. Int., 117, 132-138. https://doi.org/10.1016/j.envint.2018.04.041
  18. Lee, H. (2010). Antibiotics degradation and disinfection of antibiotic-resistant bacteria in $UV/O_{3}$-based advanced oxidation process, Master's Thesis, Myongji University.
  19. Li, J., Chen, S., Suo, Y., Ding, T., Liao, X., Ye, X., and Liu, D. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus, Food. Sci. Hum. Wellness, 7(1), 102-109. https://doi.org/10.1016/j.fshw.2018.01.002
  20. Lofrano, G., Pedrazzani, R., Libralato, G., and Carotenuto, M. (2017). Advanced oxidation processes for antibiotics removal: A review, Curr. Org. Chem., 21(12), 1054-1067. https://doi.org/10.2174/1385272821666170103162813
  21. Lowy D. Frankiln. (2003). Antimicrobial resistance: The example of Staphylococcus aureus, J. Clin. Invest., 3(3), 1265-1273. https://doi.org/10.1172/JCI18535
  22. Madge, B.A. and Jensen, J.N. (2002). Disinfection of wastewater using a 20-kHz ultrasound unit, Water Environ. Res., 74(2), 159-169. https://doi.org/10.2175/106143002X139875
  23. Manaia, C.M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fontunato, G., Iakovides, Iakovos C., Zammit, I., Kampouris, I., Vaz-Moreira, I., and Olga, C.N. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box, Environ. Int., 115, 312-324. https://doi.org/10.1016/j.envint.2018.03.044
  24. Mark, G., Tauber, A., Laupert, R., Schuchmann, H.P., Schulz, D., Mues, A and Von Sonntag, C. (1998). OH-radical formation by ultrasound in aqueous solution - Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield, Ultrason. Sonochem., 5(2), 41-52. https://doi.org/10.1016/S1350-4177(98)00012-1
  25. Mortazavi, S. M. J., Darvish, L., Abounajmi, M., Zarei, S., Zare, T., Taheri, M., and Nematollahi, S. (2015). Alteration of bacterial antibiotic sensitivity after short-term exposure to diagnostic ultrasound, Iran. Red Crescent Med. J., 17(11).
  26. Ministry of Health and Welfare. (2016). National action plan on antimicrobial resistance, 1-7.
  27. Nomura, H., Koda, S., Yasuda, K., and Kojima, Y. (1996). Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin, Ultrason. Sonochem., 3(3), S153-S156. https://doi.org/10.1016/S1350-4177(96)00020-X
  28. Pitt, W.G., McBride, M.O., Lunceford, J.K., Roper, R.J., and Sagers, R.D. (1994). Ultrasonic enhancement of antibiotic action on gram-negative bacteria, Antimicrob. Agents Chemother., 38(11), 2577-2582. https://doi.org/10.1128/AAC.38.11.2577
  29. Yu, H., Chen, S., and Cao, P. (2012). Synergistic bactericidal effects and mechanisms of low intensity ultrasound and antibiotics against bacteria: A review, Ultrason. Sonochem., 19(3), 377-382. https://doi.org/10.1016/j.ultsonch.2011.11.010