DOI QR코드

DOI QR Code

Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors

Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용

  • Min, Hyo Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jung, Joo Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Miso (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 민효준 (연세대학교 화공생명공학과) ;
  • 정주환 (연세대학교 화공생명공학과) ;
  • 강미소 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.06.22
  • Accepted : 2019.06.26
  • Published : 2019.06.30

Abstract

In this work, we demonstrate a facile process to prepare an electrolyte membrane for the supercapacitor based on a graft copolymer consisting of starch and poly(acrylonitrile) (PAN). The graft copolymer (starch-g-PAN) was synthesized via free radical polymerization initiated by ceric ions. The starch-g-PAN was dissolved in ionic liquid, i.e. 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA) without any organic solvents at room temperature. The gelation of polymer electrolyte membranes occurred by applying high temperature, i.e. $100^{\circ}C$ for 1 hour. The resultant electrolyte membrane was flexible and thus applied to flexible solid supercapacitors. The performance of the supercapacitor based on starch-g-PAN graft copolymer electrolyte reached 21 F/g at a current density of 0.5 A/g. The cell also showed high cyclic stability with 86% of retention rate within 10,000 cycles. The preparation of starch-g-PAN based polymer electrolyte membrane provides opportunities for facile fabrication of flexible solid supercapacitors with good performance.

본 연구에서는 녹말(starch)과 poly(acrylonitrile) (PAN)으로 이루어진 가지형 공중합체 기반의 슈퍼 캐퍼시터용 전해질막을 손쉽게 제조하는 방법을 제시하였다. 가지형 공중합체(starch-g-PAN)는 세륨 이온에 의해 개시된 자유 라디칼 중합을 통해 합성되었다. 실온에서 어떠한 유기용매 없이 Starch-g-PAN 고분자를 이온성 액체, 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA)에 용해하였으며 1시간 동안 $100^{\circ}C$의 고온을 가해줌으로써 손쉽게 고분자 막을 만들었다. 제조된 막은 유연하여 플렉서블 고체 슈퍼 캐퍼시터의 전해질에 적용되었다. Starch-g-PAN 기반의 고분자 전해질막을 사용한 슈퍼 캐퍼시터는 0.5 A/g의 전류 밀도에서 약 21 F/g의 정전용량을 가졌으며 10,000 사이클 동안 86%의 유지율을 보이며 높은 주기 안정성을 보였다. 본 연구를 통해 starch-g-PAN 기반의 고분자 전해질막이 우수한 성능을 가진 플렉서블 고체 슈퍼 캐퍼시터에 응용될 수 있음을 확인하였다.

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. H. S. Kim, M. S. Kang, and W. C. Yoo, "Boost-up electrochemical performance of MOFs via confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications", J. Mater. Chem. A, 7, 5561 (2019). https://doi.org/10.1039/C8TA12200H
  2. Y. Liu, N. Liu, L. Yu, X. Jiang, and X. Yan, "Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors", Chem. Eng. J., 362, 600 (2019). https://doi.org/10.1016/j.cej.2019.01.058
  3. R. Na, Y. Liu, N. Lu, S. Zhang, F. Liu, and G. Wang, "Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors", Chem. Eng. J., 374, 738 (2019). https://doi.org/10.1016/j.cej.2019.06.004
  4. X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, "The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices", Nanoscale, 3, 839 (2011). https://doi.org/10.1039/c0nr00594k
  5. Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, and E. Xie, "Freestanding three-dimensional graphene/$MnO_2$ composite networks as ultralight and flexible supercapacitor electrodes", ACS nano, 7, 174 (2012). https://doi.org/10.1021/nn304833s
  6. D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu, Q. Wang, Y. Liu, J. Li, and H. Yu, "High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane", Adv. Energy Mater., 7, 1700739 (2017). https://doi.org/10.1002/aenm.201700739
  7. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors", Chem. Soc. Rev., 44, 7484 (2015). https://doi.org/10.1039/C5CS00303B
  8. S. A. Alexandre, G. G. Silva, R. Santamaria, J. P. C. Trigueiro, and R. L. Lavall, "A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors", Electrochim. Acta, 299, 789 (2019). https://doi.org/10.1016/j.electacta.2019.01.029
  9. G. Pandey, A. Rastogi, and C. R. Westgate, "All-solid-state supercapacitors with poly (3,4-ethylenedioxythiophene)- coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte", J. Power Sources, 245, 857 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.017
  10. J. H. Lee, C. H. Park, C. S. Lee, and J. H. Kim, "Review on polymer electrolyte membranes for dye-sensitized solar cells", Membr. J., 29, 80 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.2.80
  11. C.-C. Yang, S.-T. Hsu, and W.-C. Chien, "All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes", J. Power Sources, 152, 303 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.004
  12. H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, and J. Lin, "Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte", Electrochim. Acta, 56, 6881 (2011). https://doi.org/10.1016/j.electacta.2011.06.039
  13. J. Y. Lim, J. K. Kim, J. M. Lee, D. Y. Ryu, and J. H. Kim, "An amphiphilic block-graft copolymer electrolyte: Synthesis, nanostructure, and use in solid-state flexible supercapacitors", J. Mater. Chem. A, 4, 7848 (2016). https://doi.org/10.1039/C6TA00888G
  14. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  15. G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, "Paper supercapacitors by a solvent-free drawing method", Energy Environ. Sci., 4, 3368 (2011). https://doi.org/10.1039/c1ee01853a
  16. Q. Chen, H. Yu, L. Wang, Z. ul Abdin, Y. Chen, J. Wang, W. Zhou, X. Yang, R. U. Khan, H. Zhang, and X. Chen, "Recent progress in chemical modification of starch and its applications", RSC Adv., 5, 67459 (2015). https://doi.org/10.1039/C5RA10849G
  17. M. O. S. Lobregas and D. H. Camacho, "Gel polymer electrolyte system based on starch grafted with ionic liquid: Synthesis, characterization and its application in dye-sensitized solar cell", Electrochim. Acta, 298, 219 (2019). https://doi.org/10.1016/j.electacta.2018.12.090
  18. M. Celik and M. Sacak, "Synthesis and characterization of starch-poly(methyl methacrylate) graft copolymers", J. Appl. Polym. Sci., 86, 53 (2002). https://doi.org/10.1002/app.10902
  19. L. O. Ekebafe, D. E. Ogbeifun, and F. E. Okieimen, "Effect of native cassava starch-poly (Sodium Acrylate-co-Acrylamide) hydrogel on the growth performance of maize (Zea may) seedlings", Am. J. Poly. Sci., 1, 6 (2012). https://doi.org/10.5923/j.ajps.20110101.02
  20. M. Rakesh and R. Bengt, "Graft copolymerization onto starch. 111. Grafting of acrylonitrile to gelatinized potato starch by manganic pyrophosphate initiation", J. Appl. Polym. Sci., 22, 2991 (1978). https://doi.org/10.1002/app.1978.070221024
  21. D. Apopei, M. Dinu, and E. Dragan, "Graft copolymerization of acrylonitrile onto potatoes starch by ceric ion", Dig. J. Nanomater. Bios., 7, 707 (2012).
  22. A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini, "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte", J. Power Sources, 165, 922 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
  23. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, "Ionic liquids for hybrid supercapacitors", Electrochem. Commun., 6, 566 (2004). https://doi.org/10.1016/j.elecom.2004.04.005
  24. K. W. Yoon and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  25. D. A. Kang, K. Kim, and J. H. Kim, "Highly-permeable mixed matrix membranes based on SBS-g-POEM copolymer, ZIF-8 and ionic liquid", Membr. J., 29, 44 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.44
  26. J. Gao, Z. G. Luo, and F. X. Luo, "Ionic liquids as solvents for dissolution of corn starch and homogeneous synthesis of fatty-acid starch esters without catalysts", Carbohydr. Polym., 89, 1215 (2012). https://doi.org/10.1016/j.carbpol.2012.03.096
  27. M. Isik, H. Sardon, and D. Mecerreyes, "Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials", Int. J. Mol. Sci., 15, 11922 (2014). https://doi.org/10.3390/ijms150711922
  28. J. Kadokawa, M. A. Murakami, and Y. Kaneko, "A facile preparation of gel materials from a solution of cellulose in ionic liquid", Carbohydr. Res., 343, 769 (2008). https://doi.org/10.1016/j.carres.2008.01.017
  29. J.-i. Kadokawa, M.-a. Murakami, A. Takegawa, and Y. Kaneko, "Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid", Carbohydr. Polym., 75, 180 (2009). https://doi.org/10.1016/j.carbpol.2008.07.021
  30. M. Shi, S. Kou, and X. Yan, "Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions", ChemSusChem, 7, 3053 (2014). https://doi.org/10.1002/cssc.201402275
  31. U. M. Lindstrom, "Organic reactions in water: Principles, strategies and applications", John Wiley & Sons (2008).
  32. S. Y. Lee, H.-J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1