DOI QR코드

DOI QR Code

Phonological phrase boundary and word frequency that influence the phonological word recognition

음운구 경계와 단어빈도가 한국어 음운단어 재인에 미치는 영향

  • Kim, Jeahong (Department of Psychology, Korea University) ;
  • Shin, Hasun (Department of Psychology, Korea University) ;
  • Kim, Yeseul (Department of Korean Language and Literature, Korea University) ;
  • Yun, Gwangyeol (Department of Korean Language and Literature, Korea University) ;
  • Kim, Daseul (Department of Korean Language and Literature, Korea University) ;
  • Shin, Jiyoung (Department of Korean Language and Literature, Korea University) ;
  • Nam, Kichun (Department of Psychology, Korea University)
  • Received : 2019.05.07
  • Accepted : 2019.06.14
  • Published : 2019.06.30

Abstract

This study investigated the interaction between phonological phrase boundary and word frequency variable in Korean speech processing. A word monitoring task was performed to examine the interference caused by the frequency effect of target word depending on whether a phonological phrase is formed within the target word. Frequency of target word (high vs low) and phonological phrase boundary (within target word vs between target words) were applied as between and within subject condition respectively. Our results showed the significant main effect of the phonological phrase boundary and the significant interaction. In the post-hoc analysis, the high-frequency target words were detected significantly faster than the low-frequency target words only in the within phonological phrase boundary condition. Frequency effect in the between phonological phrase boundary condition did not appear. The results indicated that the phonological phrase boundary and word frequency variable played an important role in Korean speech processing. In particular, we discussed the possibility of processing the word frequency at the very early sensory information processing stage based on the interaction of two experimental factors.

본 연구는 한국어 말소리 단어를 처리할 때, 운율구성성분인 음운구 경계와 어휘변인인 단어빈도가 상호 작용하는지를 알아보았다. 이를 위해 4개의 음운구로 발화된 문장에서 참가자가 목표단어를 찾을 때, 음운구 경계에 걸침 유무에 따라서 생기는 방해효과를 단어찾기 과제(word monitoring task)를 통해서 조사하였다. 목표단어는 2음절의 고빈도와 저빈도 단어들이 실험자 내 조건으로, 4개의 음운구로 발화된 문장에서 각각 음운구 경계 간(목표단어: 대표, 음운구 경계: [이사회의] [반대] [표명이] [있었다]) 조건과 음운구 경계 내(목표단어: 마차, 음운구 경계: [세뱃돈은] [항상] [우리] [엄마 차지였다]) 조건이 실험자 간 조건으로 설계되었다. 실험 결과, 두 변인 중 음운구 경계의 주 효과가 유의미하였으며, 상호작용도 유의미하였다. 사후분석 결과 음운구 경계 내 그룹에서만 고빈도 목표단어를 저빈도 목표단어보다 유의미하게 빠르게 탐색하는 것으로 나타났고 음운구 경계 간 그룹에서는 목표단어의 빈도효과가 나타나지 않았다. 이 결과를 기반으로 음운 단어재인시 단어의 빈도변인이 초기 단계에 영향을 미치는 여부와 한국어 말소리 처리에서 두 변인의 중요성을 논의하였다.

Keywords

References

  1. Assadollahi, R., & Pulvermuller, F. (2001). Neuromagnetic evidence for early access to cognitive representations. Neuroreport, 12(2), 207-213. https://doi.org/10.1097/00001756-200102120-00007
  2. Assadollahi, R., & Pulvermuller, F. (2003). Early influences of word length and frequency: A group study using MEG. Neuroreport, 14(8), 1183-1187. https://doi.org/10.1097/00001756-200306110-00016
  3. Balota, D. A., & Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology:Human Perception and Performance, 10(3), 340-357. https://doi.org/10.1037/0096-1523.10.3.340
  4. Balota, D. A., & Chumbley, J. I. (1985). The locus of word-frequency effects in the pronunciation task: Lexical access and/or production? Journal of Memory and Language, 24(1), 89-106. https://doi.org/10.1016/0749-596X(85)90017-8
  5. Bell, A., Brenier, J. M., Gregory, M., Girand, C., & Jurafsky, D. (2009). Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language, 60(1), 92-111. https://doi.org/10.1016/j.jml.2008.06.003
  6. Choi, J. Y., Cho, H. S., & Nam, K. C. (2011). Effect of prosody on the phonological processing of Korean words. Communication Science & Disorders, 16(4), 614-626.
  7. Christophe, A., Peperkamp, S., Pallier, C., Block, E., & Mehler, J. (2004). Phonological phrase boundaries constrain lexical access I. Adult data. Journal of Memory and Language, 51(4), 523-547. https://doi.org/10.1016/j.jml.2004.07.001
  8. Connine, C. M., Titone, D., & Wang, J. (1993). Auditory word recognition: Extrinsic and intrinsic effects of word frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 81-94. https://doi.org/10.1037/0278-7393.19.1.81
  9. Cutler, A., & Foss, D. J. (1977). On the role of sentence stress in sentence processing. Language and Speech, 20(1), 1-10. https://doi.org/10.1177/002383097702000101
  10. Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology:Human Perception and Performance, 14(1), 113-121. https://doi.org/10.1037/0096-1523.14.1.113
  11. Dahan, D., Magnuson, J. S., & Tanenhaus, M. K. (2001). Time course of frequency effects in spoken-word recognition: Evidence from eye movements. Cognitive Psychology, 42(4), 317-367. https://doi.org/10.1006/cogp.2001.0750
  12. Foster, K. I. (1976). Accessing the mental lexicon. New Approaches to Language Mechanisms, 257-287.
  13. Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6(4), 291-325. https://doi.org/10.1016/0010-0277(78)90002-1
  14. Gout, A., Christophe, A., & Morgan, J. L. (2004). Phonological phrase boundaries constrain lexical access II. Infant data. Journal of Memory and Language, 51(4), 548-567. https://doi.org/10.1016/j.jml.2004.07.002
  15. Hauk, O., & Pulvermuller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 155(5), 1090-1103. https://doi.org/10.1016/j.clinph.2003.12.020
  16. Hauk, O., Davis, M. H., Ford, M., Pulvermuller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30(4), 1383-1400. https://doi.org/10.1016/j.neuroimage.2005.11.048
  17. Jescheniak, J. D., & Levelt, W. J. (1994). Word frequency effects in speech production: Retrieval of syntactic information and of phonological form. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 824. https://doi.org/10.1037/0278-7393.20.4.824
  18. Jun, S. A. (2000). K-ToBI (Korean ToBI) labelling conventions. Version 3.1. Retrieved from https://linguistics.ucla.edu/people/jun/ktobi/k-tobi.html
  19. Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39(3-4), 159-207. https://doi.org/10.1006/cogp.1999.0716
  20. Kim, S., & Cho, T. (2009). The use of phrase-level prosodic information in lexical segmentation: Evidence from word-spotting experiments in Korean. Journal of Acoustical Society of America, 125(5), 3373-3386. https://doi.org/10.1121/1.3097777
  21. Lee, S. H., Shin, J., Kim, B. Y., & Lee, Y. J. (2003). Some considerations on SiTEC segmental and prosodic labeling convention for Korean. Malsori, 46, 127-143.
  22. Mannel, C., & Friederici, A. D. (2009). Pauses and intonational phrasing: ERP studies in 5-month-old German infants and adults. Journal of Cognitive Neuroscience, 21(10), 1988-2006. https://doi.org/10.1162/jocn.2009.21221
  23. McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 1-86. https://doi.org/10.1016/0010-0285(86)90015-0
  24. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375-407. https://doi.org/10.1037/0033-295X.88.5.375
  25. Monsell, S. (2012). The nature and locus of word frequency effects in reading. In Basic processes in reading (pp. 148-197). London:Routledge.
  26. Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on visual word recognition tasks: Where are they? Journal of Experimental Psychology: General, 118(1), 43-71. https://doi.org/10.1037/0096-3445.118.1.43
  27. Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76(2), 165. https://doi.org/10.1037/h0027366
  28. Nan, Y., Knosche, T. R., & Friederici, A. D. (2009). Non-musicians' perception of phrase boundaries in music: A cross-cultural ERP study. Biological Psychology, 82(1), 70-81. https://doi.org/10.1016/j.biopsycho.2009.06.002
  29. Nazzi, T., Iakimova, G., Bertoncini, J., Fredonie, S., & Alcantara, C. (2006). Early segmentation of fluent speech by infants acquiring French: Emerging evidence for crosslinguistic differences. Journal of Memory and Language, 54(3), 283-299. https://doi.org/10.1016/j.jml.2005.10.004
  30. Polich, J., & Donchin, E. (1988). P300 and the word frequency effect. Electroencephalography and Clinical Neurophysiology, 70(1), 33-45. https://doi.org/10.1016/0013-4694(88)90192-7
  31. Ralston, J. V., Pisoni, D. B., Lively, S. E., Greene, B. G., & Mullennix, J. W. (1991). Comprehension of synthetic speech produced by rule: Word monitoring and sentence-by-sentence listening times. Human Factors, 33(4), 471-491. https://doi.org/10.1177/001872089103300408
  32. Rubenstein, H., Garfield, L., & Millikan, J. A. (1970). Homographic entries in the internal lexicon. Journal of Verbal Learning and Verbal Behavior, 9(5), 487-494. https://doi.org/10.1016/S0022-5371(70)80091-3
  33. Rugg, M. D. (1990). Event-related brain potentials dissociate repetition effecs of high-and low-frequency words. Memory and Cognition, 18(4), 367-379. https://doi.org/10.3758/BF03197126
  34. Schvaneveldt, R. W., & McDonald, J. E. (1981). Semantic context and the encoding of words: Evidence for two modes of stimulus analysis. Journal of Experimental Psychology: Human Perception and Performance, 7(3), 673-687. https://doi.org/10.1037/0096-1523.7.3.673
  35. Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a time-line for word recognition: Evidence from eye movements and event-related potentials. Neuro Report, 9(10), 2195-2200.
  36. Shields, J. L., McHugh, A., & Martin, J. G. (1974). Reaction time to phoneme targets as a function of rhythmic cues in continuous speech. Journal of Experimental Psychology, 102(2), 250-255. https://doi.org/10.1037/h0035855
  37. Shin, J. (2011). Korean phonetics and phology. Seoul: Pagijong.
  38. Smith, M., & Halgren, E. (1987). Event-related potentials during lexical decision: Effects of repetition, word frequency, pronouncebaility, and concreteness. Electroencephalography Clinical Neurophysioogy, 40, 417-421.
  39. Tyler, L. K. (1989). Syntactic deficits and the construction of local phrases in spoken language comprehension. Cognitive Neuropsychology, 6(3), 333-355. https://doi.org/10.1080/02643298908253423
  40. Tyler, L. K., & Warren, P. (1987). Local and global structure in spoken language comprehension. Journal of Memory and Language, 26(6), 638-657. https://doi.org/10.1016/0749-596X(87)90107-0
  41. Van Petten, C., & Kutas, M. (1990). Interaction between sentence context and word frequency in event-related brain potentials. Memory and Cognition, 18(4), 380-393. https://doi.org/10.3758/BF03197127
  42. Zhao, J., Guo, J., Zhou, F., & Shu, H. (2011). Time course of Chinese monosyllabic spoken word recognition: Evidence from ERP analyses. Neuropsychologia, 49(7), 1761-1770. https://doi.org/10.1016/j.neuropsychologia.2011.02.054