DOI QR코드

DOI QR Code

Predicting the Compressive Strength of Thin-walled Composite Structure

복합재 박막 구조물의 압축강도 예측

  • Received : 2019.06.05
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

Keywords

HHOHB8_2019_v27n2_9_f0001.png 이미지

Fig 1. Form of local buckling of various section

HHOHB8_2019_v27n2_9_f0002.png 이미지

Fig 2. Typical load displacement behavior of a thin plate

HHOHB8_2019_v27n2_9_f0003.png 이미지

Fig 3. Normalized crippling data for the no edge free case [4]

HHOHB8_2019_v27n2_9_f0004.png 이미지

Fig 4. Normalized crippling data for the one edge free case [4]

HHOHB8_2019_v27n2_9_f0005.png 이미지

Fig 5. Crippling analysis procedure

HHOHB8_2019_v27n2_9_f0006.png 이미지

Fig 6. Specimen configuration and size

HHOHB8_2019_v27n2_9_f0007.png 이미지

Fig 7. Force-displacement curve for A1 specimen

HHOHB8_2019_v27n2_9_f0008.png 이미지

Fig 8. Force-displacement curve for A2 specimen

HHOHB8_2019_v27n2_9_f0009.png 이미지

Fig 9. Force-displacement curve for A3 specimen

HHOHB8_2019_v27n2_9_f0010.png 이미지

Fig 10. Force-displacement curve for B1 specimen

HHOHB8_2019_v27n2_9_f0011.png 이미지

Fig 11. Force-displacement curve for B2 specimen

HHOHB8_2019_v27n2_9_f0012.png 이미지

Fig 12. Force-displacement curve for B3 specimen

HHOHB8_2019_v27n2_9_f0013.png 이미지

Fig 13. Crippling strength v.s. L/t for A1∼A3 specimens

HHOHB8_2019_v27n2_9_f0014.png 이미지

Fig 14. Crippling strength v.s. L/t for B1∼B3 specimens

HHOHB8_2019_v27n2_9_f0015.png 이미지

Fig 15. Comparison of crippling strength between test and empirical equation for A1∼A3 specimens

HHOHB8_2019_v27n2_9_f0016.png 이미지

Fig 16. Comparison of crippling strength between test and empirical equation for B1∼B3 specims

HHOHB8_2019_v27n2_9_f0017.png 이미지

Fig 17. Comparison of failure mode between test and numerical model

Table 1. T700G/2510 laminate properties

HHOHB8_2019_v27n2_9_t0001.png 이미지

Table 2. Comparison of crippling strength between least square fit and preliminary design curve

HHOHB8_2019_v27n2_9_t0002.png 이미지

Table 3. Material properties of CFRP lamina

HHOHB8_2019_v27n2_9_t0003.png 이미지

Table 4. Layup pattern and dimension

HHOHB8_2019_v27n2_9_t0004.png 이미지

Table 5. Summary of test and numerical analysis results

HHOHB8_2019_v27n2_9_t0005.png 이미지

References

  1. ZP. Bazant and L. Cedolin, Stability of structures. elastic, inelastic, fracture and damage theories, Oxford University Press, 2010
  2. D. L. Bonanni, E. R. Johnson and J. H. Srarnes, "Local crippling of thin-walled graphite-epoxy stiffeners," AIAA Journal, Vol. 29, No. 29, 1991, pp. 1951-1959 https://doi.org/10.2514/3.10824
  3. T. Von Karman, and E. Sechler, "The strength of thin plates in compression," ASTM Appl Mech Trans, Vol. 54, 1932, pp. 53-57
  4. MIL-HDBK-17H, Composite Materials Handbook
  5. AGATE-WP3.3-033051-135, A-basis and B-basis design allowables for epoxy - based prepreg
  6. P. Natario, N. Silvestre and D. Cammtim, "Web crippling failure using quasi-static FE models," Thin-Walled Structures, Vol. 84, 2014, pp. 34-49 https://doi.org/10.1016/j.tws.2014.05.003
  7. P. Feraboli, B. Wade, F. Deleo, M. Rassian, M. Higgins and A. Byar, "LS-DYNA MAT54 modeling of the axial crushing of a composite tape," Composites: Part A, Vol. 42, 2011, pp. 1809-1825 https://doi.org/10.1016/j.compositesa.2011.08.004