DOI QR코드

DOI QR Code

High Durable Anti-Reflective Polymer with Silica Nanoparticle Array Fabricated by RF Magnetron Sputter

RF sputter를 이용한 실리카 증착 고 내구성 반사 방지막 제조

  • Jeon, Seong-Gwon (Advanced Functional Thin Films Dept., Surface Technology Division, Korea of Materials Science) ;
  • Jeong, Eun-Uk (Advanced Functional Thin Films Dept., Surface Technology Division, Korea of Materials Science) ;
  • Rha, Jong-Joo (Advanced Functional Thin Films Dept., Surface Technology Division, Korea of Materials Science) ;
  • Kwon, Jung-Dae (Advanced Functional Thin Films Dept., Surface Technology Division, Korea of Materials Science)
  • 전성권 (한국기계연구원 부설 재료연구소) ;
  • 정은욱 (한국기계연구원 부설 재료연구소) ;
  • 나종주 (한국기계연구원 부설 재료연구소) ;
  • 권정대 (한국기계연구원 부설 재료연구소)
  • Received : 2018.09.07
  • Accepted : 2019.04.01
  • Published : 2019.04.30

Abstract

We fabricated durable anti-reflective(AR) layer with silica globular coating on polymer by two steps. Firstly, nano-protrusions of polymer were formed by plasma etching known as R.I.E(reactive ion etching) process. Secondly, silica globular coating was deposited on polymer nano-protrusions for mechanically protective and optically enhancing AR layers by RF magnetron sputter. And then durable antireflective polymers were synthesized adjusting plasma power and time, working pressures of RIE and RF sputtering processes. Consequently, we acquired the average transmission (94.10%) in the visible spectral range 400-800 nm and the durability of AR layer was verified to sustain its transmission until 5,000 numbers by rubber test at a load of 500 gf.

Keywords

PMGHBJ_2019_v52n2_84_f0001.png 이미지

Fig. 2. Transmittance comparison of rubber test results.

PMGHBJ_2019_v52n2_84_f0002.png 이미지

Fig. 3. Digital images of different conditions (1),(2),(3) after rubber

PMGHBJ_2019_v52n2_84_f0003.png 이미지

Fig. 4. schematic of the Anti-reflective structure formed on PET surface and FE-SEM images of cross section at different conditions (a) 40 W 25 min (b) 70 W 10 min (c) 140 W 2 min.

PMGHBJ_2019_v52n2_84_f0004.png 이미지

Fig. 1. (a) Transmittance of visible average (400-800nm) according to plasma power 40 W, 70 W, 140 W respectively. (b) Optimized transmittance average (400-800nm) raw data changed plasma power 40 W, 70 W, 140 W respectively.

Table 1. Properties of Toray Film

PMGHBJ_2019_v52n2_84_t0001.png 이미지

Table 2. Experimental conditions

PMGHBJ_2019_v52n2_84_t0002.png 이미지

Table 3. Results of rubber test

PMGHBJ_2019_v52n2_84_t0003.png 이미지

References

  1. Y. Leterrier, Durability of nanosized oxygen-barrier coatings on polymers. Progress in Materials Science, 2003. 48(1): p. 1-55. https://doi.org/10.1016/S0079-6425(02)00002-6
  2. B.G. Priyadarshini and A. Sharma, Design of multilayer anti-reflection coating for terrestrial solar panel glass. Bulletin of Materials Science, 2016. 39(3): p. 683-689. https://doi.org/10.1007/s12034-016-1195-x
  3. U. Sikder and M.A. Zaman, Optimization of multilayer antireflection coating for photovoltaic applications. Optics & Laser Technology, 2016. 79: p. 88-94. https://doi.org/10.1016/j.optlastec.2015.11.011
  4. D. Chen, Anti-reflection (AR) coatings made by sol-gel processes: a review. Solar Energy Materials and Solar Cells, 2001. 68(3-4): p. 313-336. https://doi.org/10.1016/S0927-0248(00)00365-2
  5. J.J. Chu, C.S. Li, C.C. Shih and S.C. Chang, Antireflection high conductivity multi-layer coating for flat CRT products. 2002, Google Patents.
  6. J. Dobrowolski, Daniel Poitras, Penghui, Ma, Himanshu, Vakil and Muchael, Acree Toward perfect antireflection coatings: numerical investigation. Applied optics, 2002. 41(16): p. 3075-3083. https://doi.org/10.1364/AO.41.003075
  7. J.A. Hiller, Mendelsohn, J.D. and Rubner, M.F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature materials, 2002. 1(1): p. 59. https://doi.org/10.1038/nmat719
  8. M. Keshavarz Hedayati, and M. Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a minireview. Materials, 2016. 9(6): p. 497. https://doi.org/10.3390/ma9060497
  9. P.B. Uskens, M. Burghoorn, M. Mourad and Z. Vroon, Antireflective coatings for glass and transparent polymers. Langmuir, 2016. 32(27): p. 6781-6793. https://doi.org/10.1021/acs.langmuir.6b00428
  10. J.T. Cox and G. Hass, Antireflection coatings for optical and infrared materials. Physics of Thin Films, 1968. 2: p. 239.
  11. R. Herrmann, Quarterwave layers: simulation by three thin layers of two materials. Applied optics, 1985. 24(8): p. 1183-1188. https://doi.org/10.1364/AO.24.001183
  12. H.A. Macleod Thin-film optical filters. 2010: CRC press.
  13. H.K. Raut, V.A. Ganesh, A. Nair and Ramakrishna, Seeram. Anti-reflective coatings: A critical, indepth review. Energy & Environmental Science, 2011. 4(10): p. 3779-3804. https://doi.org/10.1039/c1ee01297e
  14. M. Mazur, D. Wojcieszak, D. Domaradzki, S. Kaczmarek and F.Placido, Song. $TiO_2/SiO_2$ multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-Electronics Review, 2013. 21(2): p. 233-238.
  15. J-H. Selj, T.T. Mongst and E.S. Marstein, Reduction of optical losses in colored solar cells with multilayer antireflection coatings. Solar Energy Materials and Solar Cells, 2011. 95(9): p. 2576-2582. https://doi.org/10.1016/j.solmat.2011.03.005
  16. J.H. Yun, T.S. Bae, J.D. Kwon, S.H. Lee and G.H. Lee, Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition. Nanoscale, 2012. 4(22): p. 7221-7230. https://doi.org/10.1039/c2nr32381h
  17. H. Shimomura, Z. Gemici, R. Cohen and M.F. Rubner Layer-by-layer-assembled high-performance broadband antireflection coatings. ACS applied materials & interfaces, 2010. 2(3): p. 813-820. https://doi.org/10.1021/am900883f
  18. Z. Wu, J. Walish, A.Nolte, L. Zhai, R.E.Cohen and M.F. Rubner Deformable antireflection coatings from polymer and nanoparticle multilayers. Advanced Materials, 2006. 18(20): p. 2699-2702. https://doi.org/10.1002/adma.200601438
  19. L. Xu and J. He, Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any posttreatments. ACS applied materials & interfaces, 2012. 4(6): p. 3293-3299. https://doi.org/10.1021/am300658e
  20. K. Choi, S.H. Park, M.S. Song, Y.T. Lee, C.K. Hwangbo, H. Yang and H.S. Lee Nano-tailoring the surface structure for the monolithic high?performance antireflection polymer film. Advanced Materials, 2010. 22(33): p. 3713-3718. https://doi.org/10.1002/adma.201001678
  21. S.Y. Chou, P.R. Krauss and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Applied physics letters, 1995. 67(21): p. 3114-3116. https://doi.org/10.1063/1.114851
  22. J.H. Yun, S.H. Lee, T.S. Bae, Y.M. Yun, S.H. Lee, J.D. Kwon and G.H. Lee, Adhesive and Structural Failures of Oxide Coatings on Plasma-Treated Polymers. Plasma Processes and Polymers, 2011. 8(9): p. 815-831. https://doi.org/10.1002/ppap.201100016
  23. I.S. Saidi, S.L. Jacques and F.K. Tittel, Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Applied optics, 1995. 34(31): p. 7410-7418. https://doi.org/10.1364/AO.34.007410
  24. A. Bieder, V. Condoin, Y. Leterrier, G. Tornare, P. Vonrohr and J. Manson, Mechanical properties of carbon-modified silicon oxide barrier films deposited by plasma enhanced chemical vapor deposition on polymer substrates. Thin solid films, 2007. 515(13): p. 5430-5438. https://doi.org/10.1016/j.tsf.2006.12.176
  25. J. Lewis, Material challenge for flexible organic devices. Materials today, 2006. 9(4): p. 38-45. https://doi.org/10.1016/S1369-7021(06)71446-8