DOI QR코드

DOI QR Code

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation

소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성

  • Joo, Jaehoon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kim, Donghyun (Analysis Technical Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • Received : 2019.03.25
  • Accepted : 2019.04.19
  • Published : 2019.04.30

Abstract

Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Keywords

PMGHBJ_2019_v52n2_96_f0001.png 이미지

Fig. 1. Plasma electrolytic oxidation of Mg alloy (AZ31B); (a) appearance of plasma discharge in silicate based electrolyte and SEM image of (a) top surface and (b) cross-section of porous oxide layer.

PMGHBJ_2019_v52n2_96_f0002.png 이미지

Fig. 2. Schematic mechanism of hydrophobizing techniques; (a) Teflon coating, (b) self-assembled monolayer coating of Octadecyltrichlorosilane (OTS) and (c) self-assembled monolayer coating of perfluorodecyltrichlorosilane (FDTS).

PMGHBJ_2019_v52n2_96_f0003.png 이미지

Fig. 3. Static contact angle of water droplet on (a) bare Mg alloy and (b) plasma electrolytic oxidized (PEO) surface. Static and dynamic (advancing and receding) contact angles of water droplet on (c) Teflon-coated, (d) OTS-coated and (e) FDTS-coated PEO surface.

PMGHBJ_2019_v52n2_96_f0004.png 이미지

Fig. 5. SEM image, EDS spectra and chemical composition of (a) Teflon-coated, (b) OTS-coated and (c) FDTS-coated PEO surface.

PMGHBJ_2019_v52n2_96_f0005.png 이미지

Fig. 4. (a) Potentiodynamic polarization curves of bare AZ31B Mg alloy, PEO treated surface (PEO), PEO treated surface with Teflon coating (PEO-T), PEO treated surface with OTS coating (PEO-O) and PEO treated surface with FDTS coating (PEO-F) in 3.5 wt.% NaCl solution. (b) Estimated corrosion current density and potential. (c) Estimated inhibition efficiency.

References

  1. G.L. Song, A. Atrens, Advanced Engineering Materials 1 (1999) 11-33. https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  2. B. Mordike, T. Ebert, Materials Science Engineering: A 302 (2001) 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
  3. J. Lee, W. Chung, U. Jung, Y. Kim, Surface and Coatings Technology 205 (2011) 4018-4023. https://doi.org/10.1016/j.surfcoat.2011.02.029
  4. J.H. Lee, Y.H. Kim, U.C. Jung, W.S. Chung, KOREAN JOURNAL OF METALS AND MATERIALS 48 (2010) 218-224. https://doi.org/10.3365/KJMM.2010.48.03.218
  5. A. Sharma, M. Suresh, H. Bhojraj, H. Narayanamurthy, R. Sahu, Metal Finishing 96 (1998) 10-19.
  6. K.Z. Chong, T.S. Shih, Materials Chemistry and Physics 80 (2003) 191-200. https://doi.org/10.1016/S0254-0584(02)00481-9
  7. N. Van Phuong, S. Moon, 한국표면공학회지 49 (2016) 141-146. https://doi.org/10.5695/JKISE.2016.49.2.141
  8. S. Moon, C. Yang, S. Na, 한국표면공학회지 47 (2014) 147-154. https://doi.org/10.5695/JKISE.2014.47.4.147
  9. G.B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Journal of Magnesium and Alloys 5 (2017) 74-132. https://doi.org/10.1016/j.jma.2017.02.004
  10. A. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. Dowey, Surface and Coatings Technology 122 (1999) 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7
  11. P.B. Srinivasan, J. Liang, C. Blawert, M. Stormer, W. Dietzel, Applied Surface Science 255 (2009) 4212-4218. https://doi.org/10.1016/j.apsusc.2008.11.008
  12. H. Duan, K. Du, C. Yan, F. Wang, Electrochimica Acta 51 (2006) 2898-2908. https://doi.org/10.1016/j.electacta.2005.08.026
  13. J. Ou, B. Perot, J.P. Rothstein, Physics of fluids 16 (2004) 4635-4643. https://doi.org/10.1063/1.1812011
  14. F. Hizal, N. Rungraeng, J. Lee, S. Jun, H.J. Busscher, H.C. Van der Mei, C.-H. Choi, ACS Applied Materials & Interfaces 9 (2017) 12118-12129. https://doi.org/10.1021/acsami.7b01322
  15. H. Wang, Y. Zhu, Z. Hu, X. Zhang, S. Wu, R. Wang, Y. Zhu, Chemical Engineering Journal 303 (2016) 37-47. https://doi.org/10.1016/j.cej.2016.05.133
  16. O. Parent, A. Ilinca, Cold regions science and technology 65 (2011) 88-96. https://doi.org/10.1016/j.coldregions.2010.01.005
  17. A.B.D. Cassie, S. Baxter, Transactions of the Faraday Society 40 (1944) 546-551. https://doi.org/10.1039/tf9444000546
  18. W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, Journal of Colloid and Interface Science 339 (2009) 208-216. https://doi.org/10.1016/j.jcis.2009.07.027
  19. J. Liang, P.B. Srinivasan, C. Blawert, M. Stormer, W. Dietzel, Electrochimica Acta 54 (2009) 3842-3850. https://doi.org/10.1016/j.electacta.2009.02.004
  20. S. Gnedenkov, V. Egorkin, S. Sinebryukhov, I. Vyaliy, A. Pashinin, A. Emelyanenko, L. Boinovich, Surface and Coatings Technology 232 (2013) 240-246. https://doi.org/10.1016/j.surfcoat.2013.05.020
  21. A. Ulman, Chemical reviews 96 (1996) 1533-1554. https://doi.org/10.1021/cr9502357
  22. C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir 31 (2015) 11040-11050. https://doi.org/10.1021/acs.langmuir.5b02392
  23. J. Lee, S. Shin, Y. Jiang, C. Jeong, H.A. Stone, C.-H. Choi, Advanced Functional Materials 27 (2017) 1606040-n/a. https://doi.org/10.1002/adfm.201606040
  24. J. Lee, Y. Kim, W. Chung, Applied Surface Science 259 (2012) 454-459. https://doi.org/10.1016/j.apsusc.2012.07.065
  25. B. Saha, W.Q. Toh, E. Liu, S.B. Tor, D.E. Hardt, J. Lee, Journal of Micromechanics and Microengineering 26 (2015) 013002. https://doi.org/10.1088/0960-1317/26/1/013002
  26. G. Zhuang, J.P. Kutter, Journal of Micromechanics and Microengineering 21 (2011) 105020. https://doi.org/10.1088/0960-1317/21/10/105020
  27. A. Marmur, E. Bittoun, Langmuir 25 (2009) 1277-1281. https://doi.org/10.1021/la802667b
  28. R.N. Wenzel, Industrial & Engineering Chemistry 28 (1936) 988-994. https://doi.org/10.1021/ie50320a024
  29. M.A. Sarshar, C. Swarctz, S. Hunter, J. Simpson, C.-H. Choi, Colloid and Polymer Science 291 (2013) 427-435. https://doi.org/10.1007/s00396-012-2753-4
  30. P.J. Yunker, T. Still, M.A. Lohr, A. Yodh, Nature 476 (2011) 308. https://doi.org/10.1038/nature10344