DOI QR코드

DOI QR Code

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20

맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로

  • Cho, Young Jin (Department of Civil Engineering, University of Seoul) ;
  • Kim, In Ho (Department of Earth and Environmental Engineering, Kangwon National University) ;
  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 조영진 (서울시립대학교 토목공학과) ;
  • 김인호 (강원대학교 지구환경시스템공학과) ;
  • 조용준 (서울시립대학교 토목공학과)
  • Received : 2019.04.01
  • Accepted : 2019.05.13
  • Published : 2019.06.30

Abstract

In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

현재 상당한 침식이 진행되고 있는 맹방해빈을 대상으로 년 간 해안선 변화량을 수치모의 하였다. 수치모의는 이산화된 해안선 단위 격자에 표사 순유입량과 해안선 전진 혹은 퇴각량은 서로 균형을 이룬다는 개념으로부터 유도한 해안선 모형(One Line Model for shore line)에 기초하여 수행하였다. 이 과정에서 연안 표사량의 경우 Energy flux 모형, 횡단 표사량의 경우 Bailard와 Inman(1981) 계열의 수정 모형(Cho and Kim, 2019)을 활용하였다. 수치모의 과정에서 closure depth는 파랑에 종속하는 것으로 해석하였으며, closure depth는 Shiled's parameter에 기반한 Hallermeier(1978)의 해석모형을 활용하여 산출하였다. 모의결과 너울이 우세한 2017.4.26부터 2017.10.15까지는 횡단 표사가 지속적으로 유입되어 해안선이 전진하는 것으로 모의되었다. 또한 10월 중순과 10월 말 사이에 연이어 발생한 년 최대 고파랑 내습에 따른 침식과 이로 인한 해안선의 일시적 퇴각, 이 후 파랑이 잦아들면서 다시 출현하는 너울에 의한 횡단표사 유입과 이로 인한 해안선 복원, 삼월중순부터 삼월말까지 연이어 발생한 고파랑에 의한 해안선 퇴각 등 일 년에 걸친 해안선 대순환과정이 상세하게 모의되는 것을 확인할 수 있었다. 전술한 해안선 대순환 과정은 2017년 4월5일, 9월 7일, 11월 7일, 2018년 3월14일에 실측된 해안선 위치에서도 유사하게 관측할 수 있다. 그러나 해안선이 전진 혹은 퇴각되는 양은 실측치에 비해 수치모의에서 크게 관측되며, 이러한 차이는 대부분의 지형모형(Genesis: Hanson and Kraus, 1989)처럼 closure depth를 $h_c=8.09m$로 일정하게 유지한 경우에 더욱 증가하였다.

Keywords

References

  1. Bagnold, R.A. (1963). Mechanics of marine sedimentation. The Sea, Ideas and Observations, vol. 3. The Earth beneath the Sea. Interscience, New York, pp. 507-528.
  2. Bailard, J.A. (1984). A simplified model for longshore transport, Proc. 19 th Intl. Conf. Coastal Eng., ASCE, Houston, 1454-1470.
  3. Bailard, J.A. and Inman, D.L. (1981). An energetics bedload model for a plane sloping beach: local transport. J. Geophys. Res., 86(C3): 2035-2043. https://doi.org/10.1029/JC086iC03p02035
  4. Bodge, K.R. and Kruss, N.C. (1991). Critical examination of longshore transport rate magnitudes, Proc. Coastal Sediments' 91, ASCE, 139-155.
  5. Bodge, K.R. and Dean, R.G. (1987). Short-term impoundment of longshore sediment transport. U.S. Army Corps of Engineeres, Coastal Engineering Research Center, MP CERC-87-7.
  6. Brutsch, K.E., Rosati III, J., Pollock, C.E. and McFall, B.C. (2016). Calculating depth of closure using WIS hindcast data. US Army Corps of Engineers, ERDC/CHL CHETN-VI-45.
  7. Cho, Y.J. and Kim, I.H. (2019). Preliminary study on the development of platform for the selection of an optimal beach stabilization measures against the beach erosion-centering on the yearly sediment budget of the Mang-Bang beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39. https://doi.org/10.9765/KSCOE.2019.31.1.28
  8. Dean, R.G. (1989). Measuring longshore transport with traps, in Nearshore Sediment Transport, R.J. Seymour, ed., New York: Plenum Press, 313-336.
  9. Dean, R.G., Berek, E.P., Gable, C.G. and Seymour, R.J. (1982). Longshore transport determined by an efficient trap. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, 954-968.
  10. Dean, R.G. and Dalrymple, R.A. (2002). Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, UK.
  11. Frelich, M.H. and Guza, R.T. (1984). Nonlinear effects on shoaling surface gravity waves. Phil. Trans. R. Soc. Lond. A, 31, 1-41. https://doi.org/10.1098/rstl.1720.0002
  12. Hallermeier, R.J. (1978). Uses for a calculated limit depth to beach erosion. Proceedings of Coastal Engineering, 1978, 1493-1512.
  13. Hallermeier, R.J. (1981). A profile zonation for seasonal sand beaches from wave climate. Coastal Eng., 4, 253-277. https://doi.org/10.1016/0378-3839(80)90022-8
  14. Hanson, H. and Kraus, N.C. (1989). Genesis: Generalized Model for Simulating Shoreline Change. U.S. Army Coprs of Engineers, Coastal Engineering Research Center, CERC-MP-89-19.
  15. Inman, D.L. and Bagnold, R.A. (1963). Littoral Processes. The Sea, vol. 3, New York, Interscience, New York, 529-553.
  16. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation 238 toolbox for the open-source CFD library: Open-Foam$^{(R)}$. International 239 Journal for Numerical Methods in Fluids, 70(9), 1073-1088. https://doi.org/10.1002/fld.2726
  17. Jacobsen, N.G., Fredsoe, J. and Jensen, J.H. (2014). Formation and development of a breaker bar under regular waves. Part 1: Model description and hydrodynamics. Coastal Engineering, 88, 182-193. https://doi.org/10.1016/j.coastaleng.2013.12.008
  18. Kamphuis, J.W. and Readshaw, J.S. (1978). A model study of alongshore sediment transport, Proc. 16 th Intl. Conf. Coastal Eng., ASCE, Hamburg.
  19. Kim, A.L., Lee, J.L. and Choi, B.H. (2001). Analysis of Wave Data and Estimation of Littoral Drifts for the Eastern Coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 13(1), 18-34.
  20. Komar, P.D. and Inman, D.L. (1970). Longshore sand transport on beaches. J. Geophys. Res., 75, 5914-5927. https://doi.org/10.1029/JC075i030p05914
  21. Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O. and Horikawa, K. (1982). Field experiments on longshore sand transport in the surf zone. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, 970-988.
  22. Oh, J.K., Chung, S.M. and Cho, Y.K. (2007). Variations of grain textural parameters of beaches by coast development at East Coast, Korea Peninsula. J. Korean Earth Science Society, 28(7), 914-924. https://doi.org/10.5467/JKESS.2007.28.7.914
  23. Reniers, A.J.H.M., Thornton, E.B., Stanton,T.P. and Roelvink, J.A. (2004). Vertical flow structure during Sandy Duck: observations and modelling. Coastal Engineering, 51, 237-260. https://doi.org/10.1016/j.coastaleng.2004.02.001
  24. Walton, T.L. and Dean, R.G. (1973). Application of littoral drift roses to coastal engineering problems. Proceedings of the Conference on Engineering Dynamics in the Surf Zone, Sydney, Australia, 221-227.
  25. Walton, T.L. and Dean, R.G. (2010). Longshore sediment transport via littoral drift rose. Ocean Engineering, 37, 228-235. https://doi.org/10.1016/j.oceaneng.2009.11.002