DOI QR코드

DOI QR Code

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process

추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측

  • Lee, Cheol-Eung (Department of Architectural, Civil, and Environmental Engineering, Kangwon National University)
  • 이철응 (강원대학교 건축.토목.환경공학부)
  • Received : 2019.05.28
  • Accepted : 2019.06.26
  • Published : 2019.06.30

Abstract

A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

추계학적 확률과정의 하나인 감마 확률과정을 이용하여 구조물의 잔류유효수명을 확률론적으로 예측할 수 있는 수학적 모형을 수립하였다. 수립된 모형은 과거부터 현재 시점까지 관측된 피해자료와 관련된 표본의 불확실성과 장래 시간 진행에 따른 누적피해의 불확실성을 올바로 고려할 수 있다. 또한 최소자승법과 모멘트법을 함께 사용하여 경사제의 재령, 운용환경 그리고 피해이력을 고려할 수 있는 모수 추정법을 제시하였다. 먼저 현재 재령의 단일 피해 자료를 갖는 임의의 조건에서 모수에 대한 민감도 분석을 수행하여, 잔류유효수명과 관련된 여러가지 거동 특성들을 분석하였다. 또한 잔류유효수명 예측모형을 경사제에 적용하였다. 경사제 피복재의 피해 이력에 대한 실험자료를 이용하여 감마 확률과정의 모수를 추정하였는데 실험자료와 매우 잘 일치하였다. 해석 결과에 의하면 현재 시점으로부터 상당히 오랜 시간이 경과하면 파괴한계를 초과할 확률이 일정한 값으로 수렴해야 하는 제약 조건을 잘 만족하였다. 한편 기대 잔류유효수명은 피해 이력의 거동 특성에 따라 각기 다르게 산정되었다. 특히 피해의 변동계수가 크면 추계학적으로 산정된 기대 잔류유효수명은 결정론적 회기모형의 해석 결과와 큰 차이를 보인다. 이는 해석과정에 포함된 불확실성의 영향으로 판단된다. 변동계수가 크면 파괴한계에 도달하는 시간의 분포가 넓게 퍼지기 때문이다. 따라서 본 연구에서 수립된 추계학적 잔류유효수명 예측모형은 현재 재령에서 경사제의 피해에 대한 확률적 평가를 수행할 수 있을 뿐만 아니라 장래 시간의 진행에 따른 누적피해의 불확실성을 올바로 고려할 수 있다.

Keywords

References

  1. Abdel-Hameed, M.A. (1975). A gamma wear process. IEEE Transactions on Reliability, 24, 152-153. https://doi.org/10.1109/TR.1975.5215123
  2. CEM (2006). Coastal Engineering Manual. U.S. Army Corps of Engineers, Washington D.C., USA.
  3. Choate, P. and Walter, S. (1983). America in ruins: The decaying infrastructure. Duke University Press.
  4. Cinlar, E., Bazant, Z.P. and Osman, E. (1977). Stochastic process for extrapolating concrete creep. J. of Eng. Mech. Div., 103(EM6) 1069-1088. https://doi.org/10.1061/JMCEA3.0002298
  5. Cui, L.R., Loh, H.T. and Xie, M. (2004). Sequential inspection strategy for multiple systems under availability requirement. European J. of Op. Re., 155, 170-177. https://doi.org/10.1016/S0377-2217(02)00822-6
  6. Dragomir, E., Gouriveau, R., Dragomir, F., Minca, E. and Zerhouni, N. (2009). Review of prognostic problem in condition-based maintenance. European Control Conference, ECC'09, Budapest, Hungary.
  7. Ellingwood, B.R. and Mori, Y. (1993). Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants. Nucl. Eng. Des., 142(2-3), 155-166. https://doi.org/10.1016/0029-5493(93)90199-J
  8. Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P. and Sun, Y. (2009). A review on degradation models in reliability analysis. Procesding of the 4th World Congress on Engineering Asset Management, Athens, Greece.
  9. Heng, A., Zhang, S., Tan, C.C. and Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23, 724- 739. https://doi.org/10.1016/j.ymssp.2008.06.009
  10. Hoffmans, G.J.C.M. and Pilarczyk, K.W. (1995). Local scour downstream of hydraulic structures. J. of Hyd. Eng., 121(4), 326-340. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(326)
  11. ISO (1998). General principles on reliability for structures. International Standard ISO/IS 2394.
  12. Jardine, A.K.S., Josepg, T. and Banjevic, D. (2006). A review on machinery diagnostic and prognostic implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20, 1483-1510. https://doi.org/10.1016/j.ymssp.2005.09.012
  13. Jardine, A.K.S., Banjevic, D., Montgomery, N. and Pak, A. (2008). Repairable system reliability: Recent developments in CBM optimization. International Journal of Performability Engineering, 4(3), 205-214.
  14. Jia, X. and Christer, A.H. (2002). A prototype cost model of functional check decisions in reliability-centered maintenance. J. of Op. Re. So., 53(12), 1380-1384. https://doi.org/10.1057/palgrave.jors.2601453
  15. Kalbfleisch, J.D. and Prentice, R.L. (2002). The statistical analysis of failure time data. Wiley, New Jersey.
  16. Lawless, J.F. (2002). Statistical models and methods for lifetime data. Wiley-Interscience, New York.
  17. Lee, C.-E. (2013). Development of stochastic expected cost model for preventive optimal maintenance of armor units of rubble-mound breakwaters. J. of Korean Society of Coastal and Ocean Engineers, 25(5), 276-284 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.5.276
  18. Lee, C.-E. (2015). Estimation of time-dependent damage paths of armors of rubble-mound breakwaters using stochastic processes. J. of Korean Society of Coastal and Ocean Engineers, 27(4), 246-257 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.246
  19. Lee, C.-E. (2016a). Development of stochastic decision model for estimation of optimal in-depth inspection period of harbor structures. J. of Korean Society of Coastal and Ocean Engineers, 28(2), 63-72 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.2.63
  20. Lee, C.-E. (2016b). Condition-based model for preventive maintenance of armor units of rubble-mound breakwaters using stochastic process. J. of Korean Society of Coastal and Ocean Engineers, 28(4), 191-201 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.4.191
  21. Lee, C.-E. and Park, D.H. (2017). Discounted cost model of condition- based maintenance regarding cumulative damage of armor units of rubble-mound breakwaters as a discrete-time stochastic process. J. of Korean Society of Coastal and Ocean Engineers, 29(2), 109-120 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.2.109
  22. Melby, J.A. (1999). Damage progression on breakwaters. Ph.D. Thesis, Dept. of Civil Eng., U. of Delaware, USA.
  23. Si, X.-S., Wang, W., Hu, C.-H. and Zhou, D.-H. (2011). Remaining useful lifetime estimation - A eview on the statistical data driven approaches. European J. of Op. Re., 213, 1-14. https://doi.org/10.1016/j.ejor.2010.11.018
  24. Pandey, M.D., Yuan, X.-X. and van Noortwijk, J.M. (2009). The influence of temporal uncertainty of deterioration on life-cycle management of structures. Structure and Infrastructure Engineering, 5(2), 145-156. https://doi.org/10.1080/15732470601012154
  25. Pecht, M. and Jaai, R. (2010). A prognostic and health management roadmap for information and electronic-rich system. Microelectronics Reliability, 50, 317-323. https://doi.org/10.1016/j.microrel.2010.01.006
  26. Peng, Y., Dong, M. and Zuo, M.J. (2010). Current status of machine prognostics in condition-based maintenance: A review. International Journal of Advanced Manufacture Technology, 50, 297-313. https://doi.org/10.1007/s00170-009-2482-0
  27. PIANC (1992). Analysis of rubble mound breakwaters. Supplement to Bull. No. 78/79, Brussels, Belgium.
  28. van der Meer, J.W. (1988). Deterministic and probabilistic design of breakwater armor layers. J. of Waterway, Port, Coastal, and Ocean Eng., 114(1), 66-80. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  29. van Noortwijk, J.M. (2009). A survey of the application of gamma processes in maintenance. Reliability Engineering and System Safety, 94, 2-21. https://doi.org/10.1016/j.ress.2007.03.019
  30. van Noortwijk, J.M. and Klatter, H.E. (1999). Optimal inspection decisions for the block mats of the Eastern-Scheldt barrier. Reliability Engineering and System Safety, 65(3), 203-211. https://doi.org/10.1016/S0951-8320(98)00097-0
  31. Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European J. of Op. Re., 139(3), 469-489. https://doi.org/10.1016/S0377-2217(01)00197-7
  32. Wang, W. (2007a). A two-stage prognosis model in condition based maintenance. European J. of Op. Re., 182, 1177-1187. https://doi.org/10.1016/j.ejor.2006.08.047
  33. Wang, W. (2007b). A prognosis model for wear prediction based oil-based monitoring. J. of Op. Re. So., 58, 887-893. https://doi.org/10.1057/palgrave.jors.2602185
  34. Wang, W. and Christer, A.H. (2000). Towards a general condition based maintenance model for a stochastic dynamic system. J. of Op. Re. So., 51, 145-155. https://doi.org/10.1057/palgrave.jors.2600863
  35. Wang, W. and Zhang, W. (2008). An asset residual life prediction model based on expert judgments. European J. of Op. Re., 188, 496-505. https://doi.org/10.1016/j.ejor.2007.03.044