DOI QR코드

DOI QR Code

A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors

  • Yucel, H. (Ankara University, Institute of Nuclear Sciences) ;
  • Birgul, O. (Ankara University, Faculty of Engineering, Dept. of Biomedical Engineering) ;
  • Uyar, E. (Ankara University, Institute of Nuclear Sciences) ;
  • Cubukcu, S. (Ankara University, Faculty of Engineering, Dept. of Physics Engineering)
  • Received : 2018.05.14
  • Accepted : 2018.12.29
  • Published : 2019.04.25

Abstract

In this study, a new measurement method based on voltage transients in CdZnTe detectors response to low energy photon irradiations is applied to measure the electron mobility (${\mu}_e$) and electron mobility-lifetime product $({\mu}{\tau})_e$ in a CdZnTe detector. In the proposed method, the pulse rise times are derived from low energy photon response to 59.5 keV($^{241}Am$), 88 keV($^{109}Cd$) and 122 keV($^{57}Co$) ${\gamma}-rays$ for the irradiation of the cathode surface at each detector for different bias voltages. The electron $({\mu}{\tau})_e$ product was then determined by measuring the variation in the photopeak amplitude as a function of bias voltage at a given photon energy using a pulse-height analyzer. The $({\mu}{\tau})_e$ values were found to be $(9.6{\pm}1.4){\times}10^{-3}cm^2V^{-1}$ for $1000mm^3$, $(8.4{\pm}1.6){\times}10^{-3}cm^2V^{-1}$ for $1687.5mm^3$ and $(7.6{\pm}1.1){\times}10^{-3}cm^2V^{-1}$ for $2250mm^3$ CdZnTe detectors. Those results were then compared with the literature $({\mu}{\tau})_e$ values for CdZnTe detectors. The present results indicate that, the electron mobility ${\mu}_e$ and electron $({\mu}{\tau})_e$ values in CdZnTe detectors can be measured easily by applying voltage transients response to low energy photons, utilizing a fast signal acquisition and data reduction and evaluation.

Keywords

References

  1. M. Amman, J.S. Lee, P.N. Luke, H. Chen, S.A. Awadalla, R. Redden, G. Bindley, Evaluation of THM-grown CdZnTe material for large-volume gamma-ray detector applications, IEEE Trans. Nucl. Sci. 56 (3) (2009) 795-799, 5076033. https://doi.org/10.1109/TNS.2008.2010402
  2. Z. He, G.F. Knoll, D.K. Wehe, J. Miyamoto, Position-sensitive single Carrier CdZnTe detectors, Nucl. Instrum. Methods Phys. Res. A. 338 (1-2) (1997) 180-185.
  3. T.E. Schlesinger, R.B. James, Semiconductors and Semimetals, vol. 43, Academic Press, San Diego, 1995, p. 339.
  4. J.C. Erickson, H.W. Yao, R.B. James, H. Hermon, M. Greaves, Time of flight experimental studies of CdZnTe radiation detectors, J. Electron. Mater. 29 (6) (2000) 699-703, https://doi.org/10.1007/s11664-000-0208-z.
  5. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, New York, 2000, p. 486.
  6. P.N. Luke, Single-polarity charge sensing in ionization detectors using coplanar electrodes, Appl. Phys. Lett. 65 (22) (1994) 2884-2886. https://doi.org/10.1063/1.112523
  7. J.E. Baciak, Nuclear Engineering and Radiological Sciences, Ph. D. thesis, University of Michigan, 2004.
  8. D.S. McGregor, in: C. Grupen, I. Buvat (Eds.), Handbook of Particle Detection and Imaging, Springer-Verlag, 2012, p. 384.
  9. B.W. Sturm, Nuclear Engineering and Radiological Sciences, Ph. D. thesis, University of Michigan, 2007.
  10. Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instrum. Methods Phys. Res. A. 463 (1-2) (2001) 250-267. https://doi.org/10.1016/S0168-9002(01)00223-6
  11. K. Suzuki, A. Iwata, S. Seto, T. Sawada, K. Imai, Drift mobility measurements on undoped $Cd_{0.9}Zn_{0.1}Te $ grown by high-pressure Bridgman technique, J. Cryst. Growth 214/215 (2000a) 909-912. https://doi.org/10.1016/S0022-0248(00)00252-9
  12. K. Suzuki, S. Seto, A. Iwata, M. Bingo, T. Sawada, K. Imai, Transport properties of undoped $Cd_{0.9}\;Zn_{0.1}Te$ grown by high pressure bridgman technique, J. Electron. Mater. 29 (6) (2000b) 704-707. https://doi.org/10.1007/s11664-000-0209-y
  13. Z. He, G.F. Knoll, D.K. Wehe, Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors, J. Appl. Phys. 84 (10) (1998) 5566-5569. https://doi.org/10.1063/1.368601
  14. H.Y. Cho, J.H. Lee, Y.K. Kwon, J.Y. Moon, C.S. Lee, Measurement of the drift mobilities and the mobility-lifetime products of charge carriers in a CdZnTe crystal by using a transient pulse technique, J. Inst. Met. 6 (2011) 1-7. C01025.
  15. S.K. Chaudhuri, Ramesh M. Krishna, Kelvin J. Zavalla, Liviu Matei, Vladimir Buliga, Michael Groza, Arnold Burger, Krishna C. Mandal, $Cd_{0.9}\;Zn_{0.1}Te$ crystal growth and fabrication of large volume single-polarity charge sensing gamma detectors, IEEE Trans. Nucl. Sci. 60 (2013) 2853-2858. https://doi.org/10.1109/TNS.2013.2270289
  16. S.K. Chaudhuri, Khai Nguyen, Rahmi O. Pak, L. Matei, V. Buliga, M. Groza, A. Burger, K.C. Mandal, Large area $Cd_{0.9}\;Zn_{0.1}Te$ pixelated detector: fabrication and characterization, IEEE Trans. Nucl. Sci. 61 (2014) 793-798. https://doi.org/10.1109/TNS.2014.2307861
  17. S.A. Awadalla, M. Al-Grafi, K. Iniewski, High voltage optimization in CdZnTe detectors, Nucl. Instrum. Methods Phys. Res. A. 764 (2014) 193-197. https://doi.org/10.1016/j.nima.2014.07.026
  18. F. Zhang, Z. He, 3D position sensitive CdZnTe gamma-ray spectrometers - improved performance with new ASICs, Proc. SPIE, - Intl. Soc. Optic. Eng. 5540 (16) (2004) 135-143.
  19. Y.A. Boucher, F. Zhang, W. Kaye, Z. He, New measurement technique for the product of the electron mobility and mean free drift time for pixelated semiconductor detectors, Nucl. Instrum. Methods Phys. Res. A. 671 (2012) 1-5. https://doi.org/10.1016/j.nima.2011.12.008
  20. H. Yucel, E. Uyar, A.N. Esen, Measurements on the spectroscopic performance of CdZnTe coplanar grid detectors, Appl. Radiat. Isot. 70 (8) (2012) 1608-1615. https://doi.org/10.1016/j.apradiso.2012.04.027
  21. B.W. Sturm, Z. He, H. Zurbuchen, P.L. Koehn, Investigation of the asymmetric characteristics and temperature effects of CdZnTe detectors, IEEE Trans. Nucl. Sci. 52 (2068) (2005) 2068-2075, 2005). 52(5 III). https://doi.org/10.1109/TNS.2005.856728
  22. Q. Li, A. Garson, P. Dowkontt, J. Martin, M. Beilicke, I. Jung, M. Groza, A. Burger, G. De Geronimo, H. Krawczynski, in: Proc. Of IEEE Nuclear Science Symposium (NSS'08), Dresden, Germany, 2008, 2008, pp. 484-489.
  23. L. Abbene, S. Del Sordo, F. Fauci, G. Gerardi, A. La Manna, G. Raso, A. Cola, E. Perillo, A. Raulo, V. Gostilo, S. Stumbo, Spectroscopic response of a CdZnTe multiple electrode detector, Nucl. Instrum. Methods Phys. Res. A. 583 (2-3) (2007) 324-331. https://doi.org/10.1016/j.nima.2007.09.015
  24. R.M. Krishna, S.K. Chaudhuri, K.J. Zavalla, K.C. Mandal, Characterization of $Cd_{0.9}\;Zn_{0.1}Te$ based virtual Frisch grid detectors for high energy gamma ray detection, Nucl. Instrum. Methods Phys. Res. A. 701 (2013) 208-213. https://doi.org/10.1016/j.nima.2012.10.131
  25. S.A. Soldner, A.J. Narvett, D.E. Covalt, C. Szeles, Characterization of the charge transport uniformity of CdZnTe crystals for large-volume nuclear detector applications, IEEE Trans. Nucl. Sci. 51 (5I) (2004) 2443-2447. https://doi.org/10.1109/TNS.2004.835569
  26. NIST ASTAR, 2018, https://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html, Access date: October 2018.
  27. NIST, 2017. http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html. Accesed July 2017.

Cited by

  1. Charge carrier mobility of halide perovskite single crystals for ionizing radiation detection vol.119, pp.3, 2019, https://doi.org/10.1063/5.0057411