DOI QR코드

DOI QR Code

Improvement of the MARS subcooled boiling model for a vertical upward flow

  • Ha, Tae-Wook (School of Mechanical Engineering, Pusan National University) ;
  • Jeong, Jae Jun (School of Mechanical Engineering, Pusan National University) ;
  • Yun, Byong-Jo (School of Mechanical Engineering, Pusan National University)
  • Received : 2018.11.14
  • Accepted : 2019.01.03
  • Published : 2019.05.25

Abstract

In the thermal-hydraulic system codes, such as MARS and RELAP5/MOD3, the Savannah River Laboratory (SRL) model has been adopted as a subcooled boiling model. It, however, has been shown that the SRL model cannot take into account appropriately the effects of inlet liquid velocity and hydraulic diameter on axial void fraction development. To overcome the problems, Ha et al. (2018) proposed a modified SRL model, which is applicable to low-pressure and low-Pe conditions (P < 9.83 bar and $Pe{\leq}70,000$) only. In this work, the authors extended the modified SRL model by proposing a new net vapor generation (NVG) model and a wall evaporation model so that the new subcooled boiling model can cover a wide range of thermal-hydraulic conditions with pressures ranging from 1.1 to 69 bar, heat fluxes of $97-1186kW/m^2$, Pe of 3600 to 329,000, and hydraulic diameters of 5-25.5 mm. The new model was implemented in the MARS code and has been assessed using various subcooled boiling experimental data. The results of the new model showed better agreements with measured void fraction data, especially at low-pressure conditions.

Keywords

References

  1. J.G. Collier, Convective Boiling and Condensation, McGraw-Hill, New York, 1981.
  2. RELAP5-3D(R) Code Development Team, RELAP5-3D(R) Code Manual Volume IV: Models and Correlations, Idaho National Lab., 2005. INEEL-EXT-98-00834.
  3. KAERI, MARS Code Manual Volume I: Code Structure, System Models and Solution Methods, Korea Atomic Energy Research Institute, 2009. KAERI/TR-2812.
  4. J.W. Spore, J.S. Elson, S.J. Jolly-Woodruff, T.D. Knight, J.C. Lin, R.A. Nelson, K.O. Pasamehmetoglu, R.G. Steinke, C. Unal, TRAC-M/Fortran 90(Version 3.0) Theory Manual, Los Alamos Lab, 2000. NUREG/CR-6724.
  5. D. Bestion, The physical closure laws in the CATHARE code, Nucl. Eng. Des. 124 (3) (1990) 229-245. https://doi.org/10.1016/0029-5493(90)90294-8
  6. P.G. Kroeger, N. Zuber, An analysis of the effects various parameters on the average void fractions in subcooled boiling, Int. J. Heat Mass Tran. 11 (2) (1968) 211-233. https://doi.org/10.1016/0017-9310(68)90151-8
  7. J.E. Kennedy, G.M. Roach, M.F. Dowling, S.I. Abdel-Khalik, S.M. Ghiaasiaan, S.M. Jeter, Z.H. Quershi, The onset of flow instability in uniformly heated horizontal microchannels, J. Heat Tran. 122 (1) (2000) 118-125. https://doi.org/10.1115/1.521442
  8. P. Saha, M. Ishii, N. Zuber, An experimental investigation of the thermally induced flow oscillations in two-phase systems, J. Heat Tran. 98 (4) (1976) 616-622. https://doi.org/10.1115/1.3450609
  9. P. Saha, N. Zuber, Point of net vapor generation and vapor void fraction in subcooled boiling, in: 5th International Heat Transfer Conference, Tokyo, 1974.
  10. S.C. Lee, S.G. Bankoff, A comparison of predictive models for the onset of significant void at low pressures in forced-convection subcooled boiling, KSME Int. J. 12 (3) (1998) 504-513. https://doi.org/10.1007/BF02946366
  11. A. Ghione, B. Noel, P. Vinai, C. Demaziere, Criteria for onset of flow instability in heated vertical narrow rectangular channels at low pressure: an assessment study, Int. J. Heat Mass Tran. 105 (2017) 464-478. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.012
  12. J.T. Rogers, M. Salcudean, Z. Abdullah, D. Mcleod, D. Poirier, The onset of significant void in up-flow boiling of water at low pressure and velocities, Int. J. Heat Mass Tran. 30 (11) (1987) 2247-2260. https://doi.org/10.1016/0017-9310(87)90218-3
  13. E.L. Bibeau, Experimental Investigation of Subcooled Void Growth for Upflow and Downflow at Low Velocities and Low Pressure, PhD Thesis, University of British Columbia, 1988.
  14. T.W. Ha, J.J. Jeong, H.Y. Yoon, B.J. Yun, Improvement of the MARS subcooled boiling model for low-pressure, low-Pe flow conditions, Ann. Nucl. Energy 120 (2018) 236-245. https://doi.org/10.1016/j.anucene.2018.05.049
  15. V. Kalitvianski, Qualification of CATHARE 2 V1. 5 Rev. 6 on Subcooled Boiling Experiments (KIT Test), CEA, 2000. SMTH/LMDS/EM/2000-030.
  16. L.S. Sabotinov, Experimental Investigation of Void Fraction in Subcooled Boiling for Different Power Distribution Law along the Channel, PhD Thesis, Moskva in Russian, 1974.
  17. R.T. Lahey, A mechanistic subcooled boiling model, in: 6th International Heat Transfer Conference, Toronto, Canada, 1978.
  18. C.G. Thurston, RELAP5/MOD3 Benchmarks of Low Pressure Subcooled Vapor Voiding in Annular Flow Channels, Babcock & Wilcox Advanced Systems Engineering, 1992. Doc. 51-3001526-00.
  19. U.S. NRC, RELAP5/MOD3.3 Code Manual Volume I: Code Structure, System Models, and Solution Methods, U.S. Nuclear Regulatory Commission, 2010. NUREG/CR-5535/Rev P4-Vol I.
  20. S.Y. Lee, J.J. Jeong, S.H. Kim, S.H. Chang, COBRA/RELAP5: a merged version of the COBRA-TF and RELAP5/MOD3 codes, Nucl. Technol. 99.2 (1992) 177-187. https://doi.org/10.13182/NT99-177
  21. J.J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3. 1, Ann. Nucl. Energy 26 (18) (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
  22. J.J. Jeong, W.J. Lee, B.D. Chung, Simulation of a main steam line break accident using a coupled 'system thermal-hydraulics, three-dimensional reactor kinetics, and hot channel analysis' code, Ann. Nucl. Energy 33 (9) (2006) 820-828. https://doi.org/10.1016/j.anucene.2006.04.008
  23. B.D. Chung, S.W. Bae, J.J. Jeong, S.M. Lee, Development and Assessment of Multidimensional Flow Models in the Thermal-hydraulic System Analysis Code MARS, Korea Atomic Energy Research Institute, 2005. KAERI/TR-3011/2005.
  24. A.S. Devkin, A.S. Podosenov, RELAP5/MOD3 Subcooled Boiling Model Assessment, U.S. Nuclear Regulatory Commission, 1998. NUREG/IA-0025.
  25. S. Hari, Y.A. Hassan, Improvement of the subcooled boiling model for low-pressure conditions in thermal-hydraulic codes, Nucl. Eng. Des. 216 (1) (2002) 139-152. https://doi.org/10.1016/S0029-5493(02)00050-X
  26. B. Koncar, B. Mavko, Modelling of low-pressure subcooled flow boiling using the RELAP5 code, Nucl. Eng. Des. 198 (3) (2003) 261-286. https://doi.org/10.1016/S0029-5493(99)00312-X
  27. M.O. Kim, S.J. Kim, G.C. Park, Comparison of void fraction profiles in subcooled boiling of low pressure by 3D measurement and MARS calculation, in: Korean Nuclear Society Conference, 2002.
  28. S.R. Dimmick, W.N. Selander, A Dynamic Model for Predicting Subcooled Void: Experimental Results and Model Development, EUROTHERM seminar, Pisa, Italy, 1990.
  29. K.S. Ha, Y.B. Lee, H.C. No, Improvements in predicting void fraction in subcooled boiling, Nucl. Technol. 150 (3) (2005) 283-292. https://doi.org/10.13182/NT05-A3622
  30. O.M. Zeitoun, Subcooled Flow Boiling and Condensation, PhD thesis, University of McMaster, 1994.
  31. R.D. Mcleod, Investigation of Subcooled Void Fraction Growth in Water under Low Pressure and Low Flow Rate Conditions, Master thesis, University of Carleton, 1987.
  32. B. Donevski, M. Shoukri, Experimental Study of Subcooled Flow Boiling and Condensation in an Annular Channel, McMaster University, 1989. ME/89/TFRI.
  33. R. Evangelisti, P. Lupoli, The void fraction in an annular channel at atmospheric pressure, Int. J. Heat Mass Tran. 12 (6) (1969) 699-711. https://doi.org/10.1016/0017-9310(69)90004-0
  34. B.J. Yun, B.U. Bae, D.J. Euh, C.H. Song, Experimental investigation of local two-phase flow parameters of a subcooled boiling flow in an annulus, Nucl. Eng. Des. 240 (12) (2010) 3956-3966. https://doi.org/10.1016/j.nucengdes.2010.02.004
  35. Y.G. Lee, J.W. Yoo, S. Kim, Measurement of local two-phase flow parameters in an annulus under low-pressure subcooled boiling condition, J. KSME (B) 42 (12) (2018) 813-824.
  36. H. Umekawa, S. Nakamura, S. Fujiyoshi, T. Ami, M. Ozawa, Y. Saito, D. Ito, The influence of the heating condition on the void fraction in a boiling channel, Physics Procedia 69 (2015) 599-606. https://doi.org/10.1016/j.phpro.2015.07.085
  37. J.K. Ferrell, D.M. Bylund, Low Pressure Steam-water Flow in a Heated Vertical Channel. Final Report Volume II on a Study of Convection Boiling inside Channels, North Carolina State University, Raleigh, 1966. Dept. of Chemical Engineering.
  38. S.Z. Rouhani, Void Measurements in the Regions of Sub-cooled and Low-quality Boiling, Part I. Low Mass Velocities, AB Atomenergi, 1966. No. AE-238.
  39. H. Christensen, Power-to-void Transfer Functions, PhD Thesis, Massachusetts Institute of Technology, 1961.
  40. S. Levy, Forced convection subcooled boiling-prediction of vapor volumetric fraction, Int. J. Heat Mass Tran. 10 (7) (1967) 951-965. https://doi.org/10.1016/0017-9310(67)90071-3
  41. F.W. Staub, The void fraction in subcooled boiling-prediction of the initial point of net vapor generation, J. Heat Tran. 90 (1) (1968) 151-157. https://doi.org/10.1115/1.3597446
  42. T.L. Bergman, F.P. Incropera, A.S. Lavine, D.P. Dewitt, Introduction to Heat Transfer, fifth ed., John Wiley & Sons, 2011.
  43. L.C. Burmeister, Convective Heat Transfer, second ed., John Wiley & Sons, 1993.
  44. J.R. Sellars, M. Tribus, J. Klein, Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit: the Graetz Problem Extended, 1954.
  45. R. Siegel, E.M. Sparrow, T.M. Hallman, Steady laminar heat transfer in a circular tube with prescribed wall heat flux, Appl. Sci. Res. Section A 7 (5) (1958) 386-392. https://doi.org/10.1007/BF03184999
  46. F.W. Dittus, L.M.K. Boelter, University of California Publications on Engineering, University of California Publications in Engineering, vol. 2, 1930, p. 371.
  47. E.L. Bibeau, M. Salcudean, Subcooled void growth mechanisms and prediction at low pressure and low velocity, Int. J. Multiphas. Flow 20 (5) (1994) 837-863. https://doi.org/10.1016/0301-9322(94)90097-3
  48. O. Zeitoun, M. Shoukri, Axial void fraction profile in low pressure subcooled flow boiling, Int. J. Heat Mass Tran. 40 (4) (1997) 869-879. https://doi.org/10.1016/0017-9310(96)00164-0

Cited by

  1. Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications-A Brief Review vol.5, pp.3, 2020, https://doi.org/10.3390/inventions5030047