DOI QR코드

DOI QR Code

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Received : 2018.12.04
  • Accepted : 2019.01.23
  • Published : 2019.05.25

Abstract

A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

Keywords

References

  1. K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater. 383 (2008) 189-195. https://doi.org/10.1016/j.jnucmat.2008.08.044
  2. A. Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich, Low-activation ferritic and martensitic steels for fusion application, J. Nucl. Mater. 233-237 (1996) 138-147. https://doi.org/10.1016/S0022-3115(96)00327-3
  3. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys, J. Nucl. Mater. 341 (2005) 103-114. https://doi.org/10.1016/j.jnucmat.2005.01.017
  4. V. Sagaradze, V. Shalaev, V. Arbuzov, B. Goshchitskii, Y. Tian, W. Qun, S. Jiguang, Radiation resistance and thermal creep of ODS ferritic steels, J. Nucl. Mater. 295 (2001) 265-272. https://doi.org/10.1016/S0022-3115(01)00511-6
  5. D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, R.K. Nanstad, Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT, J. Nucl. Mater. 392 (2009) 353-359. https://doi.org/10.1016/j.jnucmat.2009.03.024
  6. S. Ukai, T. Yoshitake, S. Mizuta, Y. Matsudaira, S. Hagi, T. Kobayashi, Preliminary tube manufacturing of oxide dispersion strengthened ferritic steels with recrystallized structure, J. Nucl. Sci. Technol. 36 (1999) 710-712. https://doi.org/10.1080/18811248.1999.9726259
  7. A. Alamo, H. Regle, G. Pons, J.L. Bechade, Microstructure and textures of ods ferritic alloys obtained by mechanical alloying, Mater. Sci. Forum 88-90 (1992) 183-190.
  8. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-H. Park, J.-H. Yang, Y.-H. Koo, Microstructure and mechanical characteristics of surface oxide dispersion-strengthened Zircaloy-4 cladding tube, Addit. Manuf. 22 (2018) 75-85. https://doi.org/10.1016/j.addma.2018.05.002
  9. V.K. Champagne, The Cold Spray Materials Deposition Process : Fundamentals and Applications, Woodhead, 2007.
  10. H. Yeom, B. Maier, G. Johnson, T. Dabney, J. Walters, K. Sridharan, Development of cold spray process for oxidation-resistant FeCrAl and Mo diffusion barrier coatings on optimized $ZIRLO^{TM}$, J. Nucl. Mater. 507 (2018) 306-315. https://doi.org/10.1016/j.jnucmat.2018.05.014
  11. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors, JOM 70 (2018) 198-202. https://doi.org/10.1007/s11837-017-2643-9
  12. G.R. Odette, Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications, JOM 66 (2014) 2427-2441. https://doi.org/10.1007/s11837-014-1207-5
  13. S.V. Klinkov, V.F. Kosarev, M. Rein, Cold spray deposition: significance of particle impact phenomena, Aero. Sci. Technol. 9 (2005) 582-591. https://doi.org/10.1016/j.ast.2005.03.005
  14. D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, M.J. Alinger, Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys, (n.d.).
  15. Standard Test Method for Microindentation Hardness of Materials 1, ASTM Int. (n.d.).
  16. Sample Dissolution, ASM Handb, Vol. 10, 1986, pp. 161-180.
  17. M.K. Miller, K.F. Russell, D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater. 351 (2006) 261-268. https://doi.org/10.1016/j.jnucmat.2006.02.004
  18. M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Stability of ferritic MA/ODS alloys at high temperatures, Intermetallics 13 (2005) 387-392. https://doi.org/10.1016/j.intermet.2004.07.036
  19. H.L. Ding, R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel, Fusion Eng. Des. 100 (2015) 371-377. https://doi.org/10.1016/j.fusengdes.2015.06.149
  20. E.J. Pavlina, C.J. Van Tyne, Correlation of yield strength and tensile strength with hardness for steels, J. Mater. Eng. Perform. 17 (2008) 888-893. https://doi.org/10.1007/s11665-008-9225-5
  21. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, K. Asabe, Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel, J. Nucl. Mater. 204 (1993) 74-80. https://doi.org/10.1016/0022-3115(93)90201-9

Cited by

  1. Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy vol.3, pp.3, 2019, https://doi.org/10.1088/2631-7990/abff1a