DOI QR코드

DOI QR Code

The effect of irradiation on hydrodynamic properties of extraction mixtures based on diamides of N-heterocyclic dicarboxylic acids in heavy fluorinated diluents

  • Belova, E.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Skvortsov, I.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Kadyko, M.I. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Yudintsev, S.V. (Institute or Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry)
  • Received : 2018.11.12
  • Accepted : 2019.02.12
  • Published : 2019.05.25

Abstract

Hydrodynamic properties have been investigated for promising extraction systems: $0.05mol\;L^{-1}$ solutions of di(N-ethyl-4-ethylanilide) of 2,2'-bipyridine-6,6'-dicarboxylic acid, di(N-ethyl-4-fluoroanilide) of 2,6-pyridinedicarboxylic acid and di(N-ethyl-4-hexylanilide) of 2,2'-bipyridine-6,6'-dicarboxylic acid in meta-nitrobenzotrifluoride (F-3) or trifluoromethylphenyl sulfone (FS-13) diluents. To evaluate the perspectives for their use as extraction mixtures at the final stage of the nuclear fuel cycle, the change in density, viscosity, surface tension, and phase separation rate under irradiation with accelerated electrons was studied. The concentrations of extractants in the irradiated mixtures have been determined and the radiation-chemical yields have been calculated. Irradiation significantly decreases the phase separation rate at the stages of extraction and back extraction for all the studied systems. The viscosity of the DYP-7 solution in FS-13 increase above the values suitable for its use in extraction processes.

Keywords

References

  1. R.S. Herbst, J.D. Law, T.A. Todd, V.N. Romanovskiy, V.A. Babain, V.M. Esimantovskiy, I.V. Smirnov, B.N. Zaitsev, Universal solvent extraction (UNEX) flowsheet testing for the removal of cesium, strontium and actinide elements from radioactive, acidic dissolved calcine waste, Solvent Extr. Ion Exch. 20 (2002) 429-445. https://doi.org/10.1081/SEI-120014366
  2. R.S. Herbst, T.A. Luther, D.R. Peterman, V.A. Babain, I.V. Smirnov, E.S. Stoyanov, Fundamental Chemistry of the universal extraction process for the simultaneous separation of major radionuclides (cesium, strontium, actinides, and lanthanides) from radioactive wastes, in: Nuclear Waste Management, American Chemical Society, 2006, pp. 171-185.
  3. M.Yu Alyapyshev, V.A. Babain, L.I. Tkachenko, et al., Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure, Solvent Extr. Ion Exch. 29 (4) (2011) 619-636. https://doi.org/10.1080/07366299.2011.581049
  4. P.K. Sinha, S. Kumar, K. Shekhar, U.K. Mudali, R. Natarajan, Thermal stability of UNEX/HCCD-PEG diluent FS-13, J. Radioanal. Nucl. Chem. 289 (2011) 899-901. https://doi.org/10.1007/s10967-011-1179-7
  5. D.O. Kirsanov, N.E. Borisova, M.D. Reshetova, A.V. Ivanov, L.A. Korotkov, I.I. Eliseev, M.Yu Alyapyshev, I.G. Spiridonov, A.V. Legin, YuG. Vlasov, V.A. Babain, New diamides of 2,2'-dipyridyl-6,6'-dicarboxylic acid: synthesis, coordination properties, possibilities of application in electrochemical sensors and liquid extraction, Izvestia AN, Seriya Khimicheskaya (4) (2012) 877-885.
  6. J.L. Lapka, Investigation of Mixed N,O-Donor Dipicolinamide Derivative Ligands for Use in Nuclear Fuel Separations, Oregon State University, 2013.
  7. V.N. Romanovskiy, I.V. Smirnov, V.A. Babain, T.A. Todd, R.S. Herbst, J.D. Law, K.N. Brewer, The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste, Solvent Extr. Ion Exch. 19 (2001) 1-21. https://doi.org/10.1081/SEI-100001370
  8. V.M. Esimantovski, B.Y. Galkin, L.N. Lazarev, R.I. Lyubtsev, V.N. Romanovskii, D.N. Shishkin, E.G. Dzekun (Eds.), Proceedings of the International Symposium on Waste Management - 92, Tucson, AZ, USA, 1992, pp. 801-804.
  9. G.F. Egorov, Radiation Chemistry of Extraction Systems, M.: Energoatomizdat, 1986, p. 208.
  10. G.F. Egorov, O.P. Afanasyev, B.Ya Zilberman, M.N. Makarychev-Mikhailov, et al., Radiation-chemical behavior of TBP in hydrocarbon and chlorohydrocarbon diluents under conditions of reprocessing of spent fuel from nuclear power plants, Radiochemistry 44 (2) (2002) 151-156. https://doi.org/10.1023/A:1019619212460
  11. V.M. Adamov, V.I. Andreev, G.S. Markov, et al., Radiochemistry 29 (6) (1987) 822-829.
  12. I.V. Blazheva, B.Ya Zilberman, A.Yu Shadrin, et al., Radiation Resistance of Hydrocarbon Diluents of Tributyl Phosphate in a Two-phase System and Carbonate Regeneration of the Extractant, Patent RU No. 2473144, B. 2, 2013.
  13. E.V. Belova, E.R. Nazin, I.V. Skvortsov, et al., Thermal stability and radiation resistance of trifluoromethyl phenyl sulfone in the presence of nitric acid, Radiochemistry 58 (5) (2016) 486-490. https://doi.org/10.1134/S1066362216050076
  14. I.V. Skvortsov, V.V. Kalistratova, E.V. Belova, et al., Thermal properties of 2,2' - bipyridine-6,6' -dicarboxylic acid bis(N-ethyl-4-hexylanilide), an extractant for radioactive waste components, Radiochemistry 59 (6) (2017) 612-617. https://doi.org/10.1134/S1066362217060091
  15. I.V. Skvortsov, E.V. Belova, A.V. Rodin, et al., Thermal stability of irradiated solutions of 2,2' -bipyridine-6,6' -dicarboxylic acid bis(N-ethyl-4-hexylanilide) in fluorinated sulfones, Radiochemistry 59 (6) (2017) 607-611. https://doi.org/10.1134/S106636221706008X
  16. S.V. Stefanovsky, I.V. Skvortsov, E.V. Belova, A.V. Rodin, Study of thermal and radiation stability of the extractant based on CMPO in fluorinated sulfones, MRS Adv. 2 (12) (2017) 641-647. Energy and Sustainability. https://doi.org/10.1557/adv.2016.654
  17. X.W. Wang, Z.M. Hu, Z.F. Liu, Int. Polym. Process. 23 (2008) 81-87. https://doi.org/10.3139/217.2046
  18. L.J. Broadbelt, S. Dziennik, M.T. Klein, Polym. Degrad. Stabil. 44 (1994) 137-146. https://doi.org/10.1016/0141-3910(94)90157-0
  19. D.E. Remy, R.E. Whitfield, H.L. Needles, Chemical Communications (London), 1967, pp. 681-682.
  20. I.V. Skvortsov, V.V. Kalistratova, A.V. Rodin, et al., Thermal stability of extractants based on diamides of heterocyclic carboxylic acids, Radiochemistry 60 (6) (2018) 601-606. https://doi.org/10.1134/S1066362218060061
  21. M. Kadyko, I. Skvortsov, E. Belova, Products of Destruction of the Extraction System Based on Diluent FS-13 in the Conditions of Radiation, Chemical and Thermal Loads, Booklet of Abstracts, Fifth International Conference on Radiation and Applications in Various Fields of Research (RAD 2017), Montenegro, Budva, 12-16 June, p. 160.
  22. E.V. Belova, I.V. Skvortsov, N.E. Borisova, Y.S. Pavlov, Products of radiation decomposition of extraction system based on diamides of heterocyclic dicarbonic acids in dilutor FS-13, in: Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. Chemistry and Materials Science, 2018, pp. 226-230. Iss. 2, P. 1.
  23. Procedure to Perform Studies with Actinide-Containing Solutions, Irradiation, and Dosimetry, IPCE RAS, Moscow, 2015.
  24. Z.V. Dzhivanova, E.V. Belova, G.P. Tkhorzhnitsky, D.I. Danilin, et al., Radiation resistance of hydrocarbon diluents of tributyl phosphate in a two-phase system and carbonate regeneration of the solvent, Radiochemistry 57 (2) (2015) 143-151. https://doi.org/10.1134/S106636221502006X
  25. N.E. Borisova, A.V. Ivanov, P.I. Matveev, A.A. Smirnova, et al., Screening of the structure of americium extractants based on a 2,2'-bipyridyl scaffold: a simple way to a N2,O2-tetradentate ligands library for rational design of an/ln extractants, ChemistrySelect 3 (2018) 1983-1989. https://doi.org/10.1002/slct.201702741

Cited by

  1. Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters vol.60, pp.19, 2021, https://doi.org/10.1021/acs.inorgchem.1c01432