DOI QR코드

DOI QR Code

Recent advances in dairy goat products

  • Sepe, Lucia (CREA Research Centre for Animal Production and Aquaculture) ;
  • Arguello, Anastasio (Animal Production and Biotechnology Group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria)
  • 투고 : 2019.06.14
  • 심사 : 2019.07.04
  • 발행 : 2019.08.01

초록

Goat population world-wide is increasing, and the dairy goat sector is developing accordingly. Although the new technology applied to the goat industry is being introduced slowly because the weight of traditional subsector in the dairy sector, considerable advances have been made in the last decade. Present review focuses on the emerging topics in the dairy goat sector. Research and development of traditional and new dairy goat products are reviewed, including the new research in the use of goat milk in infant formula. The research in alternatives to brine, production of skimmed goat cheeses and the use of different modified atmosphere packaging are also addressed. Special attention is given to antibiotic residues and their determination in goat milk. Functional foods for human benefits are a trending topic. Health properties recently discovered in dairy goat products are included in the paper, with special attention to the antioxidant activity. The dual-purpose use of goats by humankind is affecting the way of how new technology is being incorporated in the dairy goat sector and will certainly affect the future development of dairy goat products.

키워드

참고문헌

  1. Salque M, Bogucki PI, Pyzel J, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 2013;493:522-5. https://doi.org/10.1038/nature11698
  2. Hatziminaoglou Y, Boyazoglu J. The goat in ancient civilisations: from the Fertile Crescent to the Aegean Sea. Small Rumin Res 2004;51:123-9. https://doi.org/10.1016/j.smallrumres.2003.08.006
  3. FAOSTAT [Internet]. Rome, Italy: FAO; c2018 [cited 2019 April]. Available from: http://www.fao.org/faostat/en/
  4. Escareno L, Salinas-Gonzalez H, Wurzinger M, Iniguez L, Solkner J, Meza-Herrera C. Dairy goat production systems. Trop Anim Health Prod 2012;45:17-34. https://doi.org/10.1007/s11250-012-0246-6
  5. Gellynck X, Kuhne B. Horizontal and vertical networks for innovation in the traditional food sector. Int J Food System Dynamics 2010;2:123-32. https://doi.org/10.18461/ijfsd.v1i2.124
  6. Rubino R, Morand-Fehr P, Sepe L. Atlas of goat products: a wide international inventory of whatever things the goat can give us. Caseus; 2004. 381 p.
  7. Hayaloglu AA, Karagul-Yuceer Y. Utilization and characterization of small ruminants' milk and milk products in Turkey: current status and new perspectives. Small Rumin Res 2011;101:73-83. https://doi.org/10.1016/j.smallrumres.2011.09.027
  8. El Galiou O, Zantar S, Bakkali M, Laglaoui A, Centeno JA, Carballo J. Chemical and microbiological characteristics of traditional homemade fresh goat cheeses from Northern Morocco. Small Rumin Res 2015;129:108-13. https://doi.org/10.1016/j.smallrumres.2015.06.005
  9. Martinez S, Franco I, Carballo J. Spanish goat and sheep milk cheeses. Small Rumin Res 2011;101:41-54. https://doi.org/10.1016/j.smallrumres.2011.09.024
  10. Raynal-Ljutovac K, Le Pape M, Gaborit P, Barrucand P. French goat milk cheeses: an overview on their nutritional and sensorial characteristics and their impacts on consumers' acceptance. Small Rumin Res 2011;101:64-72. https://doi.org/10.1016/j.smallrumres.2011.09.026
  11. European Commission. Agriculture and food. DOOR (database) [Internet]. [cited 2019 April]. http://ec.europa.eu/agriculture/quality/door/list.html?locale=en
  12. Giraud G. Economics of goat and ewe milk cheeses with protected designation of origin in Europe. In: Proceedings in System Dynamics and Innovation in Food Networks; 2016. p. 381-3. https://doi.org/10.18461/pfsd.2016.1641
  13. Skeie SB. Quality aspects of goat milk for cheese production in Norway: a review. Small Rumin Res 2014;122:10-7. https://doi.org/10.1016/j.smallrumres.2014.07.012
  14. Hayaloglu AA, Yasar K, Tolu C, Sahingil D. Characterizing volatile compounds and proteolysis in Gokceada artisanal goat cheese. Small Rumin Res 2013;113:187-94. https://doi.org/10.1016/j.smallrumres.2013.01.001
  15. Hamid OIA, El Owni OAO. Processing and properties of Sudanese white cheese (Gibna Bayda) in small-scale cheese units in South and West Darfur states (Sudan). Livest Res Rural Dev 2008;20:Article #16. https://www.lrrd.org/lrrd20/8/hame20116.htm
  16. Tamime AY, Wszolek M, Bozanic R, Ozer B. Popular ovine and caprine fermented milks. Small Rumin Res 2011;101:2-16. https://doi.org/ 10.1016/j.smallrumres.2011.09.021
  17. Pandya AJ, Ghodke KM. Goat and sheep milk products other than cheeses and yoghurt. Small Rumin Res 2007;68:193-206. https://doi.org/ 10.1016/j.smallrumres.2006.09.007
  18. Chaves MA, Piati J, Malacarne LT, et al. Extraction and application of chia mucilage (Salvia hispanica L.) and locust bean gum (Ceratonia siliqua L.) in goat milk frozen dessert. J Food Sci Technol 2018;55:4148-58. https://doi.org/10.1007/s13197-018-3344-2
  19. Acu M, Kinik O, Yerlikaya O. Functional properties of probiotic ice cream produced from goat's milk. Carpath J Food Sci Technol 2017;9:86-100.
  20. Guler-Akin MB, Goncu B, Akin MS. Some properties of probiotic yoghurt ice cream supplemented with carob extract and whey powder. Adv Microbiol 2016;6:1010-20. https://doi.org/10.4236/aim.2016.614095
  21. Ranadheera CS, Evans CA, Adams M, Baines SK. Co-culturing of probiotics influences the microbial and physico-chemical properties but not sensory quality of fermented dairy drink made from goats' milk. Small Rumin Res 2016;136:104-8. https://doi.org/10.1016/j.smallrumres.2016.01.016
  22. Rigoto JD, Ribeiro THS, Stevanato N, Sampaio AR, Ruiz SP, Bolanho BC. Effect of acai pulp, cheese whey, and hydrolysate collagen on the characteristics of dairy beverages containing probiotic bacteria. J Food Process Eng 2019;42:e12953. https://doi.org/10.1111/jfpe.12953
  23. Freire FC, Adorno MAT, Sakamoto IK, et al. Impact of multifunctional fermented goat milk beverage on gut microbiota in a dynamic colon model. Food Res Int 2017;99:315-27. https://doi.org/10.1016/j.foodres.2017.05.028
  24. da Silveira EO, Neto JHL, da Silva LA, Raposo AES, Magnani M, Cardarelli HR. The effects of inulin combined with oligofructose and goat cheese whey on the physicochemical properties and sensory acceptance of a probiotic chocolate goat dairy beverage. LWT-Food Sci Technol 2015;62:445-51. https://doi.org/10.1016/j.lwt.2014.09.056
  25. Hodgkinson AJ, Wallace OAM, Smolenski G, Prosser CG. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion. Food Chem 2019;276:619-25. https://doi.org/10.1016/j.foodchem.2018.10.065
  26. Urakami H, Saeki M, Watanabe Y, et al. Isolation and assessment of acidic and neutral oligosaccharides from goat milk and bovine colostrum for use as ingredients of infant formulae. Int Dairy J 2018;83:1-9. https://doi.org/ 10.1016/j.idairyj.2018.03.004
  27. Maathuis A, Havenaar R, He T, Bellmann S. Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J Pediatr Gastroenterol Nutr 2017;65:661-6. https://doi.org/10.1097/MPG.0000000000001740.
  28. Miloradovic Z, Smigic N, Djekic I, et al. The influence of NaCl concentration of brine and different packaging on goat white brined cheese characteristics. Int Dairy J 2018;79:24-32. https://doi.org/10.1016/j.idairyj.2017.11.010
  29. Sanchez-Macias D, Fresno M, Moreno-Indias I, et al. Physicochemical analysis of full-fat, reduced-fat, and low-fat artisanstyle goat cheese. J Dairy Sci 2010;93:3950-6. https://doi.org/10.3168/jds.2010-3193
  30. Sanchez-Macias D, Laubscher A, Castro N, Argueello A, Jimenez-Flores R. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese. J Dairy Sci 2013;96:1325-34. https://doi.org/10.3168/jds.2012-5473
  31. Meira QGS, Magnani M, de Medeiros FC, et al. Effects of added Lactobacillus acidophilus and Bifidobacterium lactis probiotics on the quality characteristics of goat ricotta and their survival under simulated gastrointestinal conditions. Food Res Int 2015;76:828-38. https://doi.org/10.1016/j.foodres.2015.08.002
  32. Khay E, Idaomar M, El Moussaoui N, Abrini J. Application of a bacteriocin-like inhibitory substance producing Enterococcus durans E204 strain, isolated from camel milk, to control Listeria monocytogenes CECT 4032 in goat jben. Ann Microbiol 2014;64:313-9. https://doi.org/10.1007/s13213-013-0666-1
  33. Andic S, Tuncturk Y, Javidipour I. Effects of frozen storage and vacuum packaging on free fatty acid and volatile composition of Turkish Motal cheese. Food Sci Technol Int 2011;17:375-94. https://doi.org/10.1177/1082013210382485
  34. Park YW. Effect of 5 years long-term frozen storage on sensory quality of Monterey Jack caprine milk cheese. Small Rumin Res 2013;109:136-40. https://doi.org/10.1016/j.smallrumres.2012.08.002
  35. Darnay L, Nemeth A, Koncz K, et al. Effect of different $O_{2}/CO_{2}$ permeable foils on aging of semi-hard goat cheese. Int Dairy J 2019;90:114-8. https://doi.org/10.1016/j.idairyj.2018.11.010
  36. Arvanitoyannis IS, Kargaki GK, Hadjichristodoulou C. Effect of three MAP compositions on the physical and microbiological properties of a low fat Greek cheese known as "Anthotyros". Anaerobe 2011;17:295-7. https://doi.org/10.1016/j.anaerobe.2011.04.007
  37. Pappa EC, Samelis J, Kondyli E, Pappas AC. Characterisation of Urda whey cheese: Evolution of main biochemical and microbiological parameters during ripening and vacuum packaged cold storage. Int Dairy J 2016;58:54-7. https://doi.org/10.1016/j.idairyj.2015.12.016
  38. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and metaanalysis. Br Med J 2010;340:c2096. https://doi.org/10.1136/bmj.c2096
  39. Simoneit C, Burow E, Tenhagen BA, Kasbohrer A. Oral administration of antimicrobials increase antimicrobial resistance in E-coli from chicken - a systematic review. Prev Vet Med 2015;118:1-7. https://doi.org/10.1016/j.prevetmed.2014.11.010
  40. Chamosa LS, Alvarez VE, Nardelli M, Quiroga MP, Cassini MH, Centron D. Lateral Antimicrobial Resistance Genetic Transfer is active in the open environment. Sci Rep 2017;7:513. https://doi.org/10.1038/s41598-017-00600-2
  41. Attaie R, Bsharat M, Mora-Gutierrez A. Applicability of screening tests for oxytetracycline in the milk of three breeds of goats. J Food Prot 2016;79:1013-20. https://doi.org/ 10.4315/0362-028X.JFP-15-200
  42. Beltran MC, Borras M, Nagel O, Althaus RL, Molina MP. Validation of receptor-binding assays to detect antibiotics in goat's milk. J Food Prot 2014;77:308-13. https://doi.org/10.4315/0362-028X.JFP-13-253
  43. Sierra D, Contreras A, Sanchez A, et al. Detection limits of non-beta-lactam antibiotics in goat's milk by microbiological residues screening tests. J Dairy Sci 2009;92:4200-6. https://doi.org/10.3168/jds.2009-2101
  44. Sierra D, Sanchez A, Contreras A, et al. Detection limits of four antimicrobial residue screening tests for beta-lactams in goat's milk. J Dairy Sci 2009;92:3585-91. https://doi.org/10.3168/jds.2008-1981
  45. Ding W, Zhang Y, Kou LP, Jurick WM. Electronic nose application for the determination of Penicillin g in Saanen goat milk with Fisher discriminate and multilayer perceptron neural network analyses. J Food Process Preserv 2015;39:927-32. https://doi.org/10.1111/jfpp.12305
  46. Quintanilla P, Beltran MC, Molina A, Escriche I, Molina MP. Characteristics of ripened Tronchon cheese from raw goat milk containing legally admissible amounts of antibiotics. J Dairy Sci 2019;102:2941-53. https://doi.org/10.3168/jds.2018-15532
  47. Giraldo J, Althaus RL, Beltran MC, Molina MP. Antimicrobial activity in cheese whey as an indicator of antibiotic drug transfer from goat milk. Int Dairy J 2017;69:40-4. https://doi.org/10.1016/j.idairyj.2017.02.003
  48. Quintanilla P, Beltran MC, Penis B, Rodriguez M, Molina MP. Antibiotic residues in milk and cheeses after the off-label use of macrolides in dairy goats. Small Rumin Res 2018;167:55-60. https://doi.org/10.1016/j.smallrumres.2018.08.008
  49. Romero T, Balado J, Althaus RL, Beltran MC, Molina MP. Short communication: Drug residues in goat milk after prophylactic use of antibiotics in intravaginal sponges for estrus synchronization. J Dairy Sci 2016;99:141-5. https://doi.org/10.3168/jds.2015-10200
  50. Beltran MC, Morari-Pirlog A, Quintanilla P, Escriche I, Molina MP. Influence of enrofloxacin on the coagulation time and the quality parameters of goat's milk yoghurt. Int J Dairy Technol 2018;71:105-11. https://doi.org/10.1111/1471-0307.12388
  51. Romero T, Althaus R, Moya VJ, Beltran MD, Reybroeck W, Molina MP. Albendazole residues in goat's milk: Interferences in microbial inhibitor tests used to detect antibiotics in milk. J Food Drug Anal 2017;25:302-5. https://doi.org/10.1016/j.jfda.2016.08.007
  52. Romero T, Moya VJ, Fernandez N, Althaus R, Reybroeck W, Molina MP. Interferences on microbial inhibitor tests related to ivermectin treatment in lactating dairy goats. J Dairy Res 2016;83:341-4. https://doi.org/10.1017/S0022029916000443
  53. Romero T, Beltran MC, Reybroeck W, Molina MP. Effect in vitro of antiparasitic drugs on microbial inhibitor test responses for screening antibiotic residues in goat's milk. J Food Prot 2015;78:1756-9. https://doi.org/10.4315/0362-028X.JFP-15-020
  54. Romero T, Beltran MC, Althaus RL, Molina MP. Interference of non-specific detergents in microbial inhibitor test results for screening antibiotics in goat's milk. J Appl Anim Res 2017;45:159-63. https://doi.org/10.1080/09712119.2015.1129341
  55. Romero T, Beltran MC, Perez-Baena I, Rodriguez M, Molina MP. Effect of the presence of colostrum on microbial screening methods for antibiotic detection in goats' milk. Small Rumin Res 2014;121:376-81. https://doi.org/10.1016/j.smallrumres.2014.07.007
  56. Santurino C, Calvo M, Gomez-Candela C, Fontecha J. Characterization of naturally goat cheese enriched in conjugated linoleic acid and omega-3 fatty acids for human clinical trial in overweight and obese subjects. Pharma Nutr 2017;5:8-17. https://doi.org/10.1016/j.phanu.2016.12.001
  57. Almaas H, Cases AL, Devold TG, et al. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J 2006;16:961-8. https://doi.org/10.1016/j.idairyj.2005.10.029
  58. Claps S, Di Napoli MA, Caputo AR, Rufrano D, Sepe L, Di Trana A. Factor affecting the 3' sialyllactose, 6' sialyllactose and disialyllactose content in caprine colostrum and milk: Breed and parity. Small Rumin Res 2016;134:8-13. https://doi.org/10.1016/j.smallrumres.2015.11.002
  59. Giorgio D, Di Trana A, Claps S. Oligosaccharides, polyamines and sphingolipids in ruminant milk. Small Rumin Res 2018;160:23-30. https://doi.org/10.1016/j.smallrumres.2018.01.006
  60. Hodgkinson AJ, Wallace OAM, Boggs I, Broadhurst M, Prosser CG. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem 2018;245:275-81. https://doi.org/10.1016/j.foodchem.2017.10.028
  61. Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 2016;100:3877-86. https://doi.org/10.1007/s00253-016-7471-2
  62. Sant'Ana AMS, Bessa RJB, Alves SP, et al. Fatty acid, volatile and sensory profiles of milk and cheese from goats raised on native semiarid pasture or in confinement. Int Dairy J 2019;91:147-54. https://doi.org/10.1016/j.idairyj.2018.09.008
  63. Claps S, Rossi R, Di Trana A, Di Napoli M, Giorgio D, Sepe L. Bioactive compounds in goat milk and cheese: the role of feeding system and breed. In: Kukovics S, editor. Goat science. IntechOpen; 2018. ISBN: 978-1-78923-202-8. https://doi.org/10.5772/intechopen.70083
  64. Lordan R, Zabetakis I. The anti-inflammatory properties of dairy lipids. J Dairy Sci 2017;100:4197-212. https://doi.org/10.3168/jds.2016-12224
  65. Megalemou K, Sioriki E, Lordan R, Dermiki M, Nasopoulou C, Zabetakis I. Evaluation of sensory and in vitro anti-thrombotic properties of traditional Greek yogurts derived from different types of milk. Heliyon 2017;3:e00227. https://doi.org/10.1016/j.heliyon.2016.e00227
  66. de Medeiros EJL, Queiroga R, de Medeiros AN, et al. Sensory profile and physicochemical parameters of cheese from dairy goats fed vegetable oils in the semiarid region of Brazil. Small Rumin Res 2013;113:211-8. https://doi.org/10.1016/j.smallrumres.2013.02.006
  67. Quiros A, Hernandez-Ledesma B, Ramos M, Amigo L, Recio I. Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine Kefir. J Dairy Sci 2005;88:3480-7. https://doi.org/10.3168/jds.S0022-0302(05)73032-0
  68. Gomez-Ruiz JA, Taborda G, Amigo L, Recio I, Ramos M. Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur Food Res Tech 2006;223:595-601. https://doi.org/10.1007/s00217-005-0238-0
  69. Sepe L, Cornu A, Graulet B, Claps S, Rufrano D. Phenolic content of forage, milk, whey and cheese from goats fed Avena sativa. In: 10-th International Meeting on Mountain cheese; 2011; Dronero (CN), Italy. p. 31-2. ISBN 978-88-902754-5-6
  70. Chavez-Servin JL, Andrade-Montemayor HM, Vazquez CV, et al. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin Res 2018;160:54-8. https://doi.org/10.1016/j.smallrumres.2018.01.011
  71. Papadopoulou OS, Argyri AA, Varzakis EE, Tassou CC, Chorianopoulos NG. Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol 2018;74:21-33. https://doi.org/10.1016/j.fm.2018.02.005
  72. Ranadheera CS, Naumovski N, Ajlouni S. Non-bovine milk products as emerging probiotic carriers: recent developments and innovations. Curr Opin Food Sci 2018;22:109-14. https://doi.org/10.1016/j.cofs.2018.02.010
  73. de Souza JV, Dias FS. Protective, technological, and functional properties of select autochthonous lactic acid bacteria from goat dairy products. Curr Opin Food Sci 2017;13:1-9. https://doi.org/10.1016/j.cofs.2017.01.003
  74. Fresno M, Alvarez S, Diaz E, Virto M, de Renobales M. Short communication: Sensory profile of raw goat milk cheeses made with artisan kid rennet pastes from commercial-weight animals: Alternative to farmhouse goat cheeses. J Dairy Sci 2014;97:6111-5. https://doi.org/10.3168/jds.2014-8238
  75. Albano C, Morandi S, Silvetti T, Casiraghi MC, Manini F, Brasca M. Lactic acid bacteria with cholesterol-lowering properties for dairy applications: In vitro and in situ activity. J Dairy Sci 2018;101:10807-18. https://doi.org/10.3168/jds.2018-15096
  76. Darcan NK, Silanikove N. The advantages of goats for future adaptation to climate change: a conceptual overview. Small Rumin Res 2018;163:34-8. https://doi.org/10.1016/j.smallrurnres.2017.04.013
  77. Costa C, Taiti C, Strano MC, et al. Multivariate approaches to electronic nose and PTR-TOF-MS technologies in agrofood products. Electronic Noses and Tongues in Food Science Academic Press; 2016. pp. 73-82.
  78. Statistics F. European and global organic farming statistics [Internet]. c2019 [cited 2019 April]. Available from: https://statistics.fibl.org/world.html
  79. Global Organic Dairy Market Report 2019 [Internet]. OMSCo - The Organic Dairy People; c2019 [cited 2019 April]. Available from: https://www.omsco.co.uk/news/reports/
  80. Eriksson C, Bull J. Place-making with goats and microbes: the more-than-human geographies of local cheese in Jamtland, Sweden. J Rural Stud 2017;50:209-17. https://doi.org/10.1016/j.jrurstud.2017.01.010

피인용 문헌

  1. Lipid Profiling and Microstructure Characteristics of Goat Milk Fat from Different Stages of Lactation vol.68, pp.27, 2020, https://doi.org/10.1021/acs.jafc.0c02234
  2. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat vol.10, pp.8, 2019, https://doi.org/10.3390/ani10081290
  3. Intrinsic and Extrinsic Quality Attributes of Fresh and Semi-Hard Goat Cheese from Low- and High-Input Farming Systems vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091567
  4. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113486
  5. Italian local goat breeds have better milk coagulation properties than cosmopolitan breed vol.19, pp.1, 2020, https://doi.org/10.1080/1828051x.2020.1772130
  6. Compositional and functional characteristics of goat milk and relevance as a base for infant formula vol.86, pp.2, 2019, https://doi.org/10.1111/1750-3841.15574
  7. High Heat Treatment of Goat Cheese Milk. The Effect on Sensory Profile, Consumer Acceptance and Microstructure of Cheese vol.10, pp.5, 2019, https://doi.org/10.3390/foods10051116