DOI QR코드

DOI QR Code

Radiologic Outcome of Beta-Tricalcium Phosphate as a Bone Substitute in Orthopaedic Surgery

정형외과 수술에서 골대체제로써 Beta-Tricalcium Phosphate 사용에 대한 방사선학적 결과

  • Park, Hyungseok (Department of orthopedic Surgery, College of Medicine, Chosun University) ;
  • Moon, Jeong Eun (Nursing department, Honam University) ;
  • Cho, Yong Jin (Department of orthopedic Surgery, College of Medicine, Chosun University)
  • 박형석 (조선대학교 의과대학 정형외과학교실) ;
  • 문정은 (호남대학교 간호학과) ;
  • 조용진 (조선대학교 의과대학 정형외과학교실)
  • Received : 2019.11.18
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

Objectives: To analyze the radiologic results of patients treated with bone defects treated with beta-tricalcium phostphate (β-TCP) in orthopedic surgery. Methods: Medical records of 49 patients, consisting of 24 (49.0%) men and 25 (51.0%) women were retrospectively reviewed. Graft incorporation was evaluated based on Irwin's radiologic staging. Results: The explanatory power of the total regression equation in Irwin's stage at 3 months postoperatively according to three explanatory variables, namely graft tightness, age at diagnosis, and lesion volume, was 65.6%; the explanatory power of Irwin's stage at 6 months postoperatively according to two variables, namely lesion volume and graft tightness, was 32.9%; and the explanatory power of Irwin's stage at 9 months postoperatively for two variables, namely longitudinal lesion length and graft tightness in the total regression, was 30.8%. Conclusions: Graft tightness, lesion volume, age at diagnosis, and longitudinal lesion length are the common factors affecting graft incorporation.

Objectieves: 본 논문의 목적은 정형외과 수술 중 골결손에 대하여 β-TCP를 이용하여 치료 받은 대상자의 방사선학적 결과를 평가하기 위함이다. Methods: 총 49명의 대상자 중 24명 (49.0%)는 남자 였으며, 25명 (51%)는 여자였다. 요인 분석을 위하여 의무 기록 검토가 시행되었다. 각 시기별로 골대체재의 흡수 정도는 Irwin 의 방사선학적 체계에 따라서 평가되었다. Results: 술 후 3개월 째, 세 가지 측정 변수인 골대체제 이식 견고성, 진단 당시 나이, 병변의 부피에 의한 회귀 모형의 설명력은 65.6% 였다. 술 후 6개월 째, 두 가지 측정 변수인 병변의 부피, 골대체제 이식 견고성에 의한 회귀 모형의 설명력은 32.9% 였다. 술 후 9개월 째, 두 가지 측정 변수인 병변의 장축 길이, 골대체제 이식 견고성에 의한 회귀 모형의 설명력은 30.8% 였다. Conclusions: 골대체제 이식 견고성, 병변의 부피, 진단 당시 나이 그리고 병변의 장측 길이가 골대체제의 흡수에 영향을 미치는 인자였다.

Keywords

References

  1. H.S. Sohn, J.K. Oh(2019), Review of bone graft and bone substitutes with an emphasis on fracture surgeries, Biomater Res, Vol.23(9);1-7. https://doi.org/10.1186/s40824-018-0153-7
  2. V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, et al.(2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice, J Mater Sci Mater Med,Vol.25(10);2445-2461. https://doi.org/10.1007/s10856-014-5240-2
  3. H. Chung, S. Kim, S.H. Chung(2019), Clinical Outcome of Beta-Tricalcium Phosphate Use for Bone Defects after Operative Treatment of Benign Tumors, Clin Orthop Surg, Vol.11;233-6. https://doi.org/10.4055/cios.2019.11.2.233
  4. R.S. Gali, S.K. Devireddy, N. Mohan Rao, R.V. Kishore Kumar, S.R. Kanubaddy, M. Dasari, et al.(2017), Autogenous Bone Marrow Aspirate Coated Synthetic Hydroxyapatite for Reconstruction of Maxillo-Mandibular Osseous Defects: A Prospective Study, J Maxillofac Oral Surg,Vol.16(1);71-78. . https://doi.org/10.1007/s12663-016-0924-4
  5. R.B. Irwin, M. Bernhard, A. Biddinger(2001), Coralline hydroxyapatite as bone substitute in orthopedic oncology, Am J Orthop (Belle Mead NJ), Vol.30(7);544-550.
  6. Y. Nishida, S. Tsukushi, K. Hosono, H. Nakashima, Y. Yamada, H. Urakawa, et al.(2015), Surgical treatment for fibrous dysplasia of femoral neck with mild but prolonged symptoms: a case series, J Orthop Surg Res,Vol.10(63);1-7. https://doi.org/10.1186/s13018-014-0138-8
  7. S. Zwingenberger, C. Nich, R.D. Valladares, Z. Yao, M. Stiehler, S.B. Goodman(2012), Recommendations and considerations for the use of biologics in orthopedic surgery, BioDrugs, Vol.26(4);245-256. https://doi.org/10.1007/BF03261883
  8. T. Lindner, N.K. Kanakaris, B. Marx, A. Cockbain, G. Kontakis, P.V. Giannoudis(2009), Fractures of the hip and osteoporosis: the role of bone substitutes, J Bone Joint Surg Br, Vol.91(3);294-303.
  9. H.C. Schroder, L. Kurz, W.E. Muller, B. Lorenz(2000), Polyphosphate in bone, Biochemistry (Mosc), Vol.65(3);296-303.
  10. G. Daculsi, R.Z. LeGeros, E. Nery, K. Lynch, B. Kerebel(1989), Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization, J Biomed Mater Res, Vol.23(8);883-894. https://doi.org/10.1002/jbm.820230806
  11. S.E. Emery, D.A. Fuller, S. Stevenson(1996), Ceramic anterior spinal fusion. Biologic and biomechanical comparison in a canine model, Spine (Phila Pa 1976), Vol.21(23);2713-2719. https://doi.org/10.1097/00007632-199612010-00003
  12. S.P. Pilipchuk, A.B. Plonka, A. Monje, A.D. Taut, A. Lanis, B. Kang, et al.(2015), Tissue engineering for bone regeneration and osseointegration in the oral cavity, Dent Mater, Vol.31(4);317-338. https://doi.org/10.1016/j.dental.2015.01.006
  13. S.R. Motamedian, S. Hosseinpour, M.G. Ahsaie, A. Khojasteh.(2015), Smart scaffolds in bone tissue engineering: A systematic review of literature, World J Stem Cells, Vol.7(3);657-668. https://doi.org/10.4252/wjsc.v7.i3.657
  14. S.R. Motamedian, F.S. Tabatabaei, F. Akhlaghi, M. Torshabi, P. Gholamin, A. Khojasteh(2017), Response of Dental Pulp Stem Cells to Synthetic, Allograft, and Xenograft Bone Scaffolds, Int J Periodontics Restorative Dent, Vol.37(1);49-59.
  15. K.J. Choi, K.H. Kim(2017), Factors Influencing Bone Mineral Density by Postmenopausal Ages, the Korean Journal of Helath Service Management, Vol.11(4);145-155. https://doi.org/10.12811/kshsm.2017.11.4.145
  16. T.A. Damron, K.A. Mann(2018), Evidence of Negative Effects of Defect Size and Older Patient Age by Quantitative CT-Based 3D Image Analysis in Ultraporous Beta-Tricalcium Phosphate Grafted Extremity Bone Defects at One Year, Adv Orthop, Vol.2018;1-9.
  17. V. Karageorgiou, D. Kaplan(2005), Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, Vol.26(27);5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
  18. K. Nagahara, M. Isogai, K. Shibata, M.A. Meenaghan(1992), Osteogenesis of hydroxyapatite and tricalcium phosphate used as a bone substitute, Int J Oral Maxillofac Implants, Vol.7(1);72-79.
  19. M. Chazono, T. Tanaka, S. Kitasato, T. Kikuchi, K. Marumo(2008), Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models, J Orthop Sci, Vol.13(6);550-555. https://doi.org/10.1007/s00776-008-1271-1
  20. S. Wenisch, J.P. Stahl, U. Horas, C. Heiss, O. Kilian, K. Trinkaus, et al.(2003), In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy, J Biomed Mater Res A, Vol.67(3);713-718.
  21. T. Tanaka, Y. Kumagae, M. Saito, M. Chazono, H. Komaki, T. Kikuchi, et al.(2008), Bone formation and resorption in patients after implantation of beta-tricalcium phosphate blocks with 60% and 75% porosity in opening-wedge high tibial osteotomy, J Biomed Mater Res B Appl Biomater, Vol.86(2);453-459.
  22. K.J. Oh, Y.B. Ko, S. Jaiswal, I.C. Whang(2016), Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy, J Mater Sci Mater Med, Vol.27(12);179. https://doi.org/10.1007/s10856-016-5795-1