DOI QR코드

DOI QR Code

Synthesis of ZrO2 Nanorods and Their Application as Membrane Materials

  • Kwon, Guk-hyun (Energy Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Tae Woo (Energy Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Hae In (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • Cho, Won Chul (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • Kim, Heeyeon (Energy Materials Laboratory, Korea Institute of Energy Research)
  • Received : 2019.09.10
  • Accepted : 2019.10.11
  • Published : 2019.11.30

Abstract

Zirconia (ZrO2) materials are widely used in a variety of energy systems and devices. When nanorod-shaped ZrO2 is used as energy materials, ionic conductivity and mechanical strength can be improved compared to the characteristics of conventional spherical-shaped nanomaterials. In this study, we synthesized ZrO2 nanorods and investigated the shape change of them depending on various synthesis conditions such as precursor concentration, synthesis temperature, synthesis period, and aging period. The obtained nanorods were casted into a membrane for alkaline water electrolysis system and subjected to basic performance evaluation for use as a separator. The structure and the shape of the nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the like.

Keywords

References

  1. M. Florea, F. Matei-rutkovska, G. Postole, A. Urda, F. Neatu, V. I. Parvulescu, and P. Gelin, "Doped Ceria Prepared by Precipitation Route for Steam Reforming of Methane, "Catal. Today., 306 166-71 (2018). https://doi.org/10.1016/j.cattod.2016.12.006
  2. S. Okada, R. Manabe, R. Inagaki, S. Ogo, and Y. Sekine, "Methane Dissociative Adsorption in Catalytic Steam Reforming of Methane over $Pd/CeO_2$ in an Electric Field," Catal. Today., 307 272-76 (2018). https://doi.org/10.1016/j.cattod.2017.05.079
  3. T. G. Ko, K. S. Han, T. K. Rim, S. G. Oh, and S. W. Han, "Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral," J. Korean Ceram. Soc., 47 [4] 343- 52 (2010). https://doi.org/10.4191/KCERS.2010.47.4.343
  4. H. J. Noh, J. K. Lee, D. S. Seo, and K. H. Hwang, "Preparation of Zirconia Nanocrystalline Powder by the Hydrothemal Treatment at Low Temperature," J. Korean Ceram. Soc., 39 [3] 308-14 (2002). https://doi.org/10.4191/KCERS.2002.39.3.308
  5. N. M. Hwang, I. D. Jeon, L. Gueroudji and D. Y. Kim, "Temperature Dependence of the Deposition Behavior of Yttria-stabilized Zirconia CVD Films: Approach by Charged Cluster Model," J. Korean Ceram. Soc., 38 [3] 218-24 (2001).
  6. M. Rawat, and V. K. Bulasara, "Synthesis and Characterization of Low-Cost Ceramic Membranes from Fly Ash and Kaolin for Humic Acid Separation," Korean J. Chem. Eng., 35 [3] 725-33 (2018). https://doi.org/10.1007/s11814-017-0316-6
  7. Y. S. Kang, J. O. Won, and I. N. Yoon, "Electrolytes Containing Nano-Rod Ion Channels for Dye-sensitized Solar- Cells and Manufacturing Method of the Same"; KOR Patent 20130046101A, 2011.
  8. K. G. Lee, D. C. Lim, J. H. Lim, A. Y. Jang, D. Chang, Hwang, and E. Hong, "Carbon Fiber Comprising ZnO Nano-rod and Fabrication Method of the Same"; KOR Patent 20140145664A, 2015.
  9. Y. Wang , L. Yao, S. Wang, D. Mao, and C. Hu, "Low-Temperature Catalytic $CO_2$ Dry Reforming of Methane on Nibased Catalysts?: A Review," Fuel Process. Technol., 169 199-206 (2018). https://doi.org/10.1016/j.fuproc.2017.10.007
  10. D. Yap, T. Jean-michel, and B. D. Catherine, "Catalyst Assisted by Non-thermal Plasma in Dry Reforming of Methane at Low Temperature," Catal. Today., 299 263-71 (2018). https://doi.org/10.1016/j.cattod.2017.07.020
  11. A. Sivanantham and S. Shanmugam, "Nickel Selenide Supported on Nickel Foam as an Efficient and Durable Non-Precious Electrocatalyst for the Alkaline Water Electrolysis," Appl. Catal. B Environ., 203 485-93 (2017). https://doi.org/10.1016/j.apcatb.2016.10.050
  12. K. G. Kanade, J. O. Baeg, S. K. Apte, T. L. Prakash, and B. B Kale, "Synthesis and Characterization of Nanocrystallined Zirconia by Hydrothermal Method," Mater. Res. Bull., 43 723-29 (2008). https://doi.org/10.1016/j.materresbull.2007.03.025
  13. R. A. Espinoza-gonzález, D. E. Diaz-droguett, J. I. Avila, C. A. Gonzalez-fuentes, and V. M. Fuenzalida, "Hydrothermal Growth of Zirconia Nanobars on Zirconium Oxide," Mater. Lett., 65 2121-23 (2011). https://doi.org/10.1016/j.matlet.2011.04.056
  14. K. Zeng and Z. Dongke, "Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications," Prog. Energy Combust. Sci., 36 [3] 307-26 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
  15. S. Marini, P. Salvi, P. Nelli, E. Pesenti, M. Villa, M. Berrettoni, G. Zangari, and Y. Kiros, "Advanced Alkaline Water Electrolysis," Electrochimi. Acta., 82 384-91 (2012). https://doi.org/10.1016/j.electacta.2012.05.011
  16. D. M. F. Santos, C. A. C. Sequeira, and J. L. Figueirdo, "Hydrogen Production by Alkaline Water Electrolysis," Quim. Nova., 36 [8] 1176-93 (2013). https://doi.org/10.1590/S0100-40422013000800017
  17. E. Montoneri, G. Modica, and E. Tempesti, "Reinforced Asbestos Separators for Water Electrolysis," Int. J. Hydrogen Energy, 11 [4] 233-40 (1986). https://doi.org/10.1016/0360-3199(86)90184-9
  18. M. Paidar, V. Fateev, and K. Bouzek, "Membrane Electrolysis - History, Current Status and Perspective," Electrochimi. Acta., 209 737-56 (2016). https://doi.org/10.1016/j.electacta.2016.05.209
  19. P. Aerts, S. Kuypers, I. Genne, R. Leysen, J. Mewis, and I. F. J. Vankelecom, "Polysulfone - $ZrO_2$ Surface Interactions. The Influence on Formation, Morphology and Properties of Zirfon-membranes," J. Phys. Chem. B, 110 7425-30 (2006). https://doi.org/10.1021/jp053976c
  20. W. Adriansens and R. Leysen, "A New Separator for Ni-H, Fuel Cells Batteries," Int. J. Hydrogen Energy, 21 [8] 679-84 (1996). https://doi.org/10.1016/0360-3199(95)00132-8
  21. P. H. Vermeiren, J. P. Moreels, and R. Leysen, "Porosity in Vompositezirfon$^{(R)}$ Membranes," J. Porous Mater., 3 33-40 (1996). https://doi.org/10.1007/BF01135359
  22. T. Ulrike, "$TiO_2$-Doped Zirconia: Crystal Structure, Monoclinic Tetragonal Phase Transition, and the New Tetragonal Compound $Zr_3TiO_8$," J. Am. Ceram. Soc., 89 [10] 3201-210 (2006). https://doi.org/10.1111/j.1551-2916.2006.01200.x
  23. C. Aling, Z. Yan, M. Sue, L. Yong, and S. Wenjie, "Assembly of Monoclinic $ZrO_2$ nanorods: Formation Mechanism and Crystal Phase Control," CrystEngComm, 18 580-87 (2016). https://doi.org/10.1039/c5ce02269j

Cited by

  1. Photosensors-based on cadmium sulfide (CdS) nanostructures: a review vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00141-5