DOI QR코드

DOI QR Code

Fabrication of Silicide-based Thermoelectric Nanocomposites: A Review

  • Kim, Gwansik (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2019.06.27
  • Accepted : 2019.07.16
  • Published : 2019.09.30

Abstract

Thermoelectric is a promising technology that can convert temperature differences to electricity (or vice versa). However, their relatively low efficiencies limit their applications to thermoelectric power generation systems. Therefore, low cost and high performance are important prerequisites for the application of thermoelectric materials to automotive thermoelectric generators. Silicide-based thermoelectric materials are good candidates for such applications. Recently, the thermoelectric performances of silicide-based thermoelectric materials have been significantly improved. However, increasing the thermoelectric performance of the materials while ensuring mechanical reliability remains a challenge. This review summarizes the preparation and design guidelines for silicide-based thermoelectric nanocomposites, as well as our recent progress in the development of nanocomposites with high thermoelectric performances or high mechanical reliabilities.

Keywords

References

  1. BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry Engineering Scoping Study; pp. 13, U.S. Department of Energy, Industrial Technologies Program, 2008.
  2. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures," Nature, 489 414-18 (2012). https://doi.org/10.1038/nature11439
  3. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports," J. Am. Chem. Soc., 133 [20] 7837-46 (2011). https://doi.org/10.1021/ja111199y
  4. S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen, and Z. Ren, "Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials $HfxZr_{1-x}NiSn_{0.99}Sb_{0.01}$," Adv. Funct. Mater., 3 [9] 1210-14 (2013).
  5. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type $Mg_2Si_{1-x}Sn_x$ Solid Solutions," Phys. Rev. Lett., 108 [16] 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601
  6. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals," Nature, 508 373-77 (2014). https://doi.org/10.1038/nature13184
  7. W. D. Liu, Z. G. Chen, and J. Zou, "Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges," Adv. Energy Mater., 8 [19] 1800056 (2018). https://doi.org/10.1002/aenm.201800056
  8. Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High Figures of Merit and Natural Nanostructures in $Mg_2Si_{0.4}Sn_{0.6}$ based Thermoelectric Materials," Appl. Phys. Lett., 93 [10] 102109 (2008). https://doi.org/10.1063/1.2981516
  9. H. Lee, G. Kim, B. Lee, J. Kim, S. M. Choi, K. H. Lee, and W. Lee, "Effect of Si Content on the Thermoelectric Transport Properties of Ge-doped Higher Manganese Silicides," Scr. Mater., 135 72-5 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.011
  10. Y. Gelbstein, J. Tunbridge, R. Dixon, M. J. Reece, H. Ning, R. Gilchrist, R. Summers, I. Agote, M. A. Lagos, K. Simpson, C. Rouaud, P. Feulner, S. Rivera, R. Torrecillas, M. Husband, J. Crossley, and I. Robinson, "Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications," J. Electron. Mater., 43 [6] 1703-11 (2014). https://doi.org/10.1007/s11664-013-2848-9
  11. G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Enhanced Fracture Toughness of Al and Bi Co-doped $Mg_2Si$ by Metal Nanoparticle Decoration," Ceram. Int., 43 [15] 12979-82 (2017). https://doi.org/10.1016/j.ceramint.2017.06.002
  12. G. Kim, H. Lee, H. J. Rim, J. Kim, K. Kim, J. W. Roh, S. M. Choi, B. W. Kim, K. H. Lee, and W. Lee, "Dependence of Mechanical and Thermoelectric Properties of $Mg_2Si$-Sn Nanocomposites on Interface Density," J. Alloys Compd., 769 53-8 (2018). https://doi.org/10.1016/j.jallcom.2018.07.323
  13. J. Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, "Microstructural Effects on Thermoelectric Efficiency: A Case Study on Magnesium Silicide," Acta Mater., 77 68-75 (2014). https://doi.org/10.1016/j.actamat.2014.05.041
  14. G. Kim, S. W. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, B. W. Kim, K. H. Lee, and W. Lee, "Improved Trade-Off between Thermoelectric Performance and Mechanical Reliability of $Mg_2Si$ by Hybridization of Few-Layered Reduced Graphene Oxides," Scr. Mater., 162 402-7 (2019). https://doi.org/10.1016/j.scriptamat.2018.11.052
  15. N. Satyala and D. Vashaee, "Detrimental Influence of Nanostructuring on the Thermoelectric Properties of Magnesium Silicide," J. Appl. Phys., 112 [9] 093716 (2012). https://doi.org/10.1063/1.4764872
  16. P. Norouzzadeh, Z. Zamanipour, J. S. Krasinski, and D. Vashaee, "The Effect of Nanostructuring on Thermoelectric Transport Properties of p-Type Higher Manganese Silicide $MnSi_{1.73}$," J. Appl. Phys., 112 [12] 124308 (2012). https://doi.org/10.1063/1.4769884
  17. N. Satyala and D. Vashaee, "The Effect of Crystallite Size on Thermoelectric Properties of Bulk Nanostructured Magnesium Silicide ($Mg_2Si$) Compounds," Appl. Phys. Lett., 100 073107 (2012). https://doi.org/10.1063/1.3684615
  18. G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B. W. Kim, S. W. Kim, K. H. Lee, and W. Lee, "Co-doping of Al and Bi to Control the Transport Properties for Improving Thermoelectric Performance of $Mg_2Si$," Scr. Mater., 116 11-15 (2011). https://doi.org/10.1016/j.scriptamat.2016.01.027
  19. G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Up-Scaled Solid State Reaction for Synthesis of Doped $Mg_2Si$," Scr. Mater., 128 53-56 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.010
  20. A. U. Khan, N. Vlachos, and Th. Kyratsi, "High Thermo-Electric Figure of Merit of $Mg_2Si_{0.55}Sn_{0.4}Ge_{0.05}$ Materials Doped with Bi and Sb," Scr. Mater., 69 [8] 606-9 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.008
  21. X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J. B. Goodenough, and L. Shi, "Effects of (Al,Ge) Double Doping on the Thermoelectric Properties of Higher Manganese Silicides," J. Appl. Phys., 114 [17] 173705 (2013). https://doi.org/10.1063/1.4828731
  22. K. Kim, G. Kim, S. I. Kim, K. H. Lee, and W. Lee, "Clarification of Electronic and Thermal Transport Properties of Pb-, Ag-, and Cu-doped p-type $Bi_{0.52}Sb_{1.48}Te_3$," J. Alloys Compd., 772 593-602 (2019). https://doi.org/10.1016/j.jallcom.2018.09.099
  23. C. L. Chen, H. Wang, Y. Y. Chen, T. Day, and G. J. Snyder, "Thermoelectric Properties of p-Type Polycrystalline SnSe Doped with Ag," J. Mater. Chem. A, 2 [29] 11171-76 (2014). https://doi.org/10.1039/C4TA01643B
  24. G. Kim, H. J. Rim, K. H. Lee, J. W. Roh, and W. Lee, "Suppressed Secondary Phase Generation in Thermoelectric Higher Manganese Silicide by Fabrication Process Optimization," Ceram. Int., 45 [15] 19538-41 (2019). https://doi.org/10.1016/j.ceramint.2019.06.104
  25. Y. Sadia, Z. Aminov, D. Mogilyansky, and Y. Gelbstein, "Texture Anisotropy of Higher Manganese Silicide Following Arc-Melting and Hot-Pressing," Intermetallics, 68 71-7 (2016). https://doi.org/10.1016/j.intermet.2015.08.009
  26. S. Muthiah, R. C. Singh, B. D. Pathak, P. K. Avasthi, R. Kumar, A. Kumar, A. K. Srivastava, and A. Dhar, "Significant Enhancement in Thermoelectric Performance of Nanostructured Higher Manganese Silicides Synthesized Employing a Melt Spinning Technique," Nanoscale, 10 [4] 1970-77 (2018). https://doi.org/10.1039/C7NR06195A
  27. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008). https://doi.org/10.1126/science.1156446
  28. N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador, and H. Kleinke, "Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped $Mg_2Si_{0.7}Ge_{0.3}$," J. Electron. Mater., 45 [12] 6052-58 (2016). https://doi.org/10.1007/s11664-016-4892-8
  29. N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. Zhao, J. S. Tse, J. R. Salvador, and H. Kleinke, "Enhanced Figure of Merit in $Mg_2Si_{0.877}Ge_{0.1}Bi_{0.023}$/Multi Wall Carbon Nanotube Nanocomposites," RSC Adv., 5 65328-36 (2015). https://doi.org/10.1039/C5RA12225B
  30. T. Itoh and A. Tominaga, "Influence of Pulverization and CaO Nanoparticles Addition on Thermoelectric Properties and Grain Growth of $Mg_2Si$ Based Compound," Mater. Trans., 57 [7] 1088-93 (2016). https://doi.org/10.2320/matertrans.Y-M2016812
  31. T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N. A. Katcho, A. Shakouri, N. Mingo, J. P. Fleurial, N. D. Browning, and S. M. Kauzlarich, "Synthesis and Characterization of $Mg_2Si$/Si Nanocomposites Prepared from $MgH_2$ and Silicon, and Their Thermoelectric Properties," J. Mater. Chem., 22 24805-13 (2012). https://doi.org/10.1039/c2jm35257e
  32. D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, A. E. C. Palmqvist, "Enhanced Thermoelectric Properties of $Mg_2Si$ by Addition of $TiO_2$ Nanoparticles," J. Appl. Phys., 111 [47] 023701 (2012). https://doi.org/10.1063/1.3675512
  33. Y. Lin, K. A. Watson, M. J. Fallbach, S. Ghose, J. G. Smith, D. M. Delozier Jr., W. Cao, R. E. Crooks, and J. W. Connell, "Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes," ACS Nano, 3 [4] 871-84 (2009). https://doi.org/10.1021/nn8009097
  34. G. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, K. H. Lee, and W. Lee, "$Mg_2Si$-based Thermoelectric Compounds with Enhanced Fracture Toughness by Introduction of Dual Nanoinclusions," J. Alloys Compd., 801 234-38 (2019). https://doi.org/10.1016/j.jallcom.2019.06.075
  35. K. Yin, X. Su, Y. Yan, H. Tang, M. G. Kanatzidis, C. Uher, and X. Tang, "Morphology Modulation of SiC Nano-Additives for Mechanical Robust High Thermoelectric Performance $Mg_2Si_{1-x}Sn_x/SiC$ Nano-Composites," Scr. Mater., 126 1-5 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.010
  36. Z. Li, J. F. Dong, F. H. Sun, Asfandiyar, Y. Pan, S. F. Wang, Q. Wang, D. Zhang, L. Zhao, and J. F. Li, "MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio," Adv. Sci., 5 [9] 1800626 (2018). https://doi.org/10.1002/advs.201800626
  37. B. Zhang, T. Zheng, Q. Wang, Y. Zhu, H. N. Alshareef, M. J. Kim, and B. E. Gnade, "Contact Resistance and Stability Study for Au, Ti, Hf and Ni Contacts on Thin-Film $Mg_2Si$," J. Alloys Compd., 699 1134-39 (2017). https://doi.org/10.1016/j.jallcom.2016.12.229
  38. Z. Li, J. F. Dong, F. H. Sun, S. Hirono, and J. F. Li, "Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire," Chem. Mater., 29 [17] 7378-89 (2017). https://doi.org/10.1021/acs.chemmater.7b02270

Cited by

  1. Thermoelectric Properties in Bi2Te3/Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) Composites vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.08