DOI QR코드

DOI QR Code

No Tilt Angle Dependence of Grain Boundary on Mechanical Strength of Chemically Deposited Graphene Film

  • Kim, Jong Hun (Department of Materials Science and Engineering, Seoul National University) ;
  • An, Sung Joo (Department of Mechanical Engineering, Columbia University) ;
  • Lee, Jong-Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Ji, Eunji (Department of Materials Science and Engineering, Yonsei University) ;
  • Hone, James (Department of Mechanical Engineering, Columbia University) ;
  • Lee, Gwan-Hyoung (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2019.08.22
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

Although graphene has been successfully grown in large scale via chemical vapor deposition (CVD), it is still questionable whether the mechanical properties of CVD graphene are equivalent to those of exfoliated graphene. In addition, there has been an issue regarding how the tilt angle of the grain boundary (GB) affects the strength of graphene. We investigate the mechanical properties of CVD graphene with nanoindentation from atomic force microscopy and transmission electron microscopy. Surprisingly, the samples with GB angles of 10° and 26° yielded similar fracture stresses of ~ 80 and ~ 79 GPa, respectively. Even for samples with GB exhibiting a wider range, from 0° to 30°, only a slightly wider fracture stress range (~ 50 to ~ 90 GPa) was measured, regardless of tilt angle. The results are contrary to previous studies that have reported that GBs with a larger tilt angle yield stronger graphene film. Such a lack of angle dependence of GB can be attributed to irregular and well-stitched GB structures.

Keywords

References

  1. C. Lee, X. Wei1, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321 [5887] 385-88 (2008). https://doi.org/10.1126/science.1157996
  2. A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
  3. Y. Gao, S. Kim, S. Zhou, H.-C. Chiu, D. Nelias, C. Berger, W. Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, "Elastic Coupling between Layers in Two-Dimensional Materials," Nat. Mater., 14 714-20 (2015). https://doi.org/10.1038/nmat4322
  4. J. H. Kim, J. H. Jeong, N. Kim, R. Joshi, and G.-H. Lee, "Mechanical Properties of Two-Dimensional Materials and Their Applications," J. Phys. D: Appl. Phys., 52 [8] 083001 (2018). https://doi.org/10.1088/1361-6463/aaf465
  5. P. Y. Huang, C. S. Ruiz-Vargas, A. M. Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, "Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts," Nature, 469 389-92 (2011). https://doi.org/10.1038/nature09718
  6. C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, "Softened Elastic Response and Unzipping in Chemical Vapor Deposition Graphene Membranes," Nano Lett., 11 [6] 2259-63 (2011). https://doi.org/10.1021/nl200429f
  7. G.-H. Lee, R. C. Cooper, S. J. An, S. Lee, A. Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, J. Hone, "High-Strength Chemical-Vapor-Deposited Graphene and Grain Boundaries," Science, 340 [6136] 1073-76 (2013). https://doi.org/10.1126/science.1235126
  8. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
  9. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5 574-78 (2010). https://doi.org/10.1038/nnano.2010.132
  10. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, "Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes," Nano Lett., 8 [11] 3582-86 (2008). https://doi.org/10.1021/nl801386m
  11. Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, "The Nature of Strength Enhancement and Weakening by Pentagon-Heptagon Defects in Graphene," Nat. Mater., 11 759-63 (2012). https://doi.org/10.1038/nmat3370
  12. H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, "Measurement of the Intrinsic Strength of Crystalline and Polycrystalline Graphene," Nat. Commun., 4 2811 (2013). https://doi.org/10.1038/ncomms3811
  13. R. Grantab, V. B. Shenoy, and R. S. Ruoff, "Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene," Science, 330 [6006] 946-48 (2010). https://doi.org/10.1126/science.1196893
  14. J. Zhang, J. Zhao, and J. Lu, "Intrinsic Strength and Failure Behaviors of Graphene Grain Boundaries," ACS Nano, 6 [3] 2704-11 (2012). https://doi.org/10.1021/nn3001356
  15. J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, "Mechanical Properties of Monolayer Graphene Oxide," ACS Nano, 4 [11] 6557-64 (2010). https://doi.org/10.1021/nn101781v
  16. Zhao, J., Z. Guang-Yu, and D.-X. Shi, "Review of Graphene-Based Strain Sensors," Chin. Phys. B, 22 [5] 057701 (2013). https://doi.org/10.1088/1674-1056/22/5/057701
  17. Z. Luo, X. Hu, X. Tian, C. Luo, H. Xu, Q. Li, Q. Li, J. Zhang, F. Qiao, X. Wu, V. E. Borisenko, and J. Chu, "Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications," Sensors, 19 [5] 1250 (2019). https://doi.org/10.3390/s19051250
  18. P. Y. Huang, C. S. Ruiz-Vargas, A. M. Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, "Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts," Nature, 469 [7330] 389-92 (2011). https://doi.org/10.1038/nature09718
  19. A.W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, "Tailoring Electrical Transport across Grain Boundaries in Polycrystalline Graphene," 336 [6085] 1143-46 (2012). https://doi.org/10.1126/science.1218948
  20. X. Li, M. Sun, C. Shan, Q. Chen, and X. Wei, "Mechanical Properties of 2D Materials Studied by In Situ Microscopy Techniques," Adv. Mater. Interfaces, 5 [5] 1701246. https://doi.org/10.1002/admi.201701246
  21. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., 97 [18] 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  22. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. Thong, "Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy," Small, 6 [2] 195-200 (2010). https://doi.org/10.1002/smll.200901173
  23. K.-T. Wan, S. Guo, and D. A. Dillard, "A Theoretical and Numerical Study of a Thin Clamped Circular Film under an External Load in the Presence of a Tensile Residual Stress," Thin Solid Films, 425 [1] 150-62 (2003). https://doi.org/10.1016/S0040-6090(02)01103-3
  24. O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and T. Weng, "Elastic Constants of Compression-Annealed Pyrolytic Graphite," J. Appl. Phys., 41 [8] 3373-82 (1970). https://doi.org/10.1063/1.1659428
  25. B. Straumal and B. Baretzky, "Grain Boundary Phase Transitions and their Influence on Properties of Polycrystals," Interface Sci., 12 [2] 147-55 (2004). https://doi.org/10.1023/B:INTS.0000028645.30358.f5

Cited by

  1. Isolation of Antibodies Against the Spike Protein of SARS-CoV from Pig Serum for Competitive Immunoassay vol.15, pp.4, 2019, https://doi.org/10.1007/s13206-021-00033-0