DOI QR코드

DOI QR Code

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Lim, Hyung Mi (Korea Institute of Ceramic Engineering and Technology KICET) ;
  • Lee, Kee Sung (School of Mechanical Systems Engineering, Kookmin University) ;
  • Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
  • Received : 2019.08.27
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

Keywords

References

  1. S. Meille, M. Lombardi, J. Chevalier, and L. Montanaro, "Mechanical Properties of Porous Ceramics in Compression: On the Transition Between Elastic, Brittle, and Cellular Behaviour," J. Eur. Ceram. Soc., 32 [15] 3959-67 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.006
  2. B. R. Alquist, "Flow Modification Properties of Ceramic Foam Filters," A Summary of Recent Work, Foseco Foundry Practice, 238 (2003).
  3. J. W. Geus and J. Van Giezen, "Catalysts Supported by Porous Ceramic Layers on Ceramic or Metallic Substrates," MRS Online Proc. Libr., 454 147-59 (1996). https://doi.org/10.1557/PROC-454-147
  4. A. Yu. Val'dberg, A. A. Moshkin, and I. G. Kamenshchikov, "Mist Formation and Drop Collection in Gas Purification Systems (in Russian)," Graal Publishing House, Moscow, 2003.
  5. T. M. Amadio, Fabrication and Characterization of Porous Ceramic Filters with Impregnated Silver Nanoparticles for Water Purification, pp. 113-34, in Ph. D. Thesis, Federal University of Santa Catarina, Florianopolis, 2017.
  6. K. S. Chou, T. K. Lee, and F. J. Lie, "Sensing Mechanism of a Porous Ceramic as Humidity Sensor," J. Adv. Ceram. Soc., 56 [1-2] 106-11 (1999).
  7. H. Takahara, "The Sound Absorption Characteristics of Particulate Porous Ceramic Materials," J. Adv. Ceram., 41 [3] 265-74 (1994).
  8. T. Shimizua, K. Matsuura, H. Furuea, and K. Matsuzaka, "Thermal Conductivity of High Porosity Alumina Refractory Bricks Made by a Slurry Gelation and Foaming Method," J. Eur. Ceram. Soc., 33 [15-16] 3429-35 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.07.001
  9. I. J. Kim and L. J. Gauckler, "Formation, Decomposition and Thermal Stability of $Al_2TiO_5$ Ceramics," J. Ceram. Sci. Technol., 3 [2] 49-60 (2012).
  10. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  11. E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschkec, "Carbon Nanofibers for Composite Applications," Carbon, 42 [5-6] 1153-58 (2004). https://doi.org/10.1016/j.carbon.2003.12.043
  12. Y. Zhu, Z. Huang, S. Dong, M. Yuan, and D. Jiang, "Manufacturing 2D Carbon-Fiber-Reinforced SiC Matrix Composites by Slurry Infiltration and PIP Process," Ceram. Int., 34 [5] 1201-5 (2008). https://doi.org/10.1016/j.ceramint.2007.02.014
  13. S. Maensiri, P. Laokul, J. Klinkaewnarong, and V. Amornkitbamrung, "Carbon Nanofiber-Reinforced Alumina Nanocomposites: Fabrication and Mechanical Properties," Mater. Sci. Eng. A, 447 [1] 44-50 (2007). https://doi.org/10.1016/j.msea.2006.08.009
  14. F. W. Zok and C. G. Levi, "Mechanical Properties of Porous-Matrix Ceramic Composites," Adv. Eng. Mater., 3 [1] 15-23 (2001). https://doi.org/10.1002/1527-2648(200101)3:1/2<15::AID-ADEM15>3.0.CO;2-A
  15. K. Yasui, S. Goto, H. Kinoshita, S. Kamiunten, T. Yuji, Y. Okamura, N. Mungkung, and M. Sezaki, "Ceramic Waste Glass Fiber-Reinforced Plastic-containing Filtering Materials for Turbid Water Treatment," Environ. Earth Sci., 75 1135 (2016). https://doi.org/10.1007/s12665-016-5933-6
  16. B. H. Kim and Y. H. Na, "Fabrication of Fiber-Reinforced Porous Ceramics of $Al_2O_3$-Mullite and SiC-Mullite Systems," Ceram. Int. 21 [6] 381-84 (1995). https://doi.org/10.1016/0272-8842(95)94461-I
  17. J. Wang, M. R. Piramoon, C. B. Ponton, and P. M. Marquis, "A Study in Short Ahnnina Fiber Reinforced Mullite Composites," Brit. Ceram. Trans., 90 [4] 105-10 (1991).
  18. H. Liu, C. Li, X. Ren, K. Liu, and J. Yang, "Fine Platinum Nanoparticles Supported on a Porous Ceramic Membrane as Efficient Catalysts for the Removal of Benzene," Sci. Rep., 7 1-8 (2017). https://doi.org/10.1038/s41598-016-0028-x
  19. A. Korjakins, L. Upeniece and D. Bajare, "Heat Insulation Materials of Porous Ceramics, Using Plant Filler"; 169-74 in. Proceedings Part I -4th Int. Conf. Civ. Eng. 2013.
  20. N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Effect of Amphiphile Chain Length on Wet Foam Stability of Porous Ceramics," Ceram. Int., 41 [3] 4021-27 (2015). https://doi.org/10.1016/j.ceramint.2014.11.089
  21. W. Pabst, E. Gregorova, and G. Ticha, "Elasticity of Porous Ceramics-A Critical Study of Modulus-Porosity Relations," J. Eur. Ceram. Soc., 26 [7] 1085-97 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.01.041
  22. Y. W. Kim, C. Wang, and C. B. Park, Processing of Porous Silicon Oxycarbide Ceramics from Extruded Blends of Polysiloxane and Polymer Microbead," J. Ceram. Soc. Jpn., 115 [1343] 419-24 (2007). https://doi.org/10.2109/jcersj.115.419
  23. U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Wet Foams," J. Am. Ceram. Soc., 90 [1] 16-22 (2007). https://doi.org/10.1111/j.1551-2916.2006.01328.x
  24. S. I. Jung, J. H. Kim, J. H. Lee, Y. G. Jung, U. Paik, and K. S. Lee, "Microstructure and Mechanical Properties of Zirconia-Based Thermal Barrier Coatings with Starting Powder Morphology," Surf. Coat. Technol., 204 [6] 802-6 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.070
  25. A. R. Studart, U. T. Gonzenbach, I. K. Akartuna, E. Tervoort, and L. J. Gauckler," Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 [31] 3283-89 (2007). https://doi.org/10.1039/b703255b
  26. K. D. Danov and P. A. Kralchevsky, "The Standard Free Energy of Surfactant Adsorption at Air/Water and Oil/Water Interfaces: Theoretical vs. Empirical Approaches," Colloid J., 74 [2] 172-85 (2012). https://doi.org/10.1134/S1061933X12020032
  27. A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, and D. S. Su, "Structure and Electrical Conductivity of Porous Zirconium Titanate Ceramics Produced by Mechanochemical Treatment and Sintering," J. Alloys Compd., 479 [1] 525-31 (2009). https://doi.org/10.1016/j.jallcom.2008.12.123
  28. E. Lopez-Lopez, R. Moreno, and C. Baudin, "Fracture Strength and Fracture Toughness of Zirconium Titanate-Zirconia Bulk Composite Materials," J. Eur. Ceram. Soc., 35 [1] 277-83 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.005
  29. I. J. Kim and G. Cao, "Low Thermal Expansion Behavior and Thermal Durability of $ZrTiO_4-Al_2TiO_5-Fe_2O_3$ Ceramics between 750 and $1400^{\circ}C$," J. Eur. Ceram. Soc., 22 [14] 2627-32 (2002). https://doi.org/10.1016/S0955-2219(02)00126-7
  30. M. Veceř and J. Pospisil, "Stability and Rheology of Aqueous Suspensions," Procedia Eng., 42 1720-25 (2012). https://doi.org/10.1016/j.proeng.2012.07.564
  31. I. Butnaru, M. P. Fernandez-Ronco, J. Czech-Polak, M. Heneczkowski, M. Bruma, and S. Gaan, "Effect of Meltable Triazine-DOPO Additive on Rheological, Mechanical, and Flammability Properties of PA6," Polymers, 7 [8] 1541-63 (2015). https://doi.org/10.3390/polym7081469
  32. S. Mazumder, J. G. Park, N. Sakar, K. S. Lee, B. Basnet, and I. J. Kim, "Mechanical Properties of in-situ Growth Carbon Nanotubes Reinforced Porous Ceramics by Direct Foaming," J. Ceram. Process. Res., 17 [12] 1274-78 (2016). https://doi.org/10.36410/JCPR.2016.17.12.1274
  33. A. R. Patel, B. Mankoc, M. D. Bin Sintang, A. Lesaffer, and K. Dewettincka, "Fumed Silica-Based Organogels and 'Aqueous-Organic' Bigels," RSC Adv., 5 [13] 9703-8 (2015). https://doi.org/10.1039/C4RA15437A

Cited by

  1. Mechanical properties of carbon fiber-reinforced Al2O3 porous ceramics vol.58, pp.3, 2021, https://doi.org/10.1007/s43207-020-00105-1