DOI QR코드

DOI QR Code

OLED용 지연형광 소재의 연구 동향

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes

  • 이주영 (경희대학교 정보디스플레이학과)
  • Lee, Ju Young (Department of Information Display, Kyung Hee University)
  • 투고 : 2019.08.25
  • 심사 : 2019.09.10
  • 발행 : 2019.09.30

초록

The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.

키워드

참고문헌

  1. W. K. Bae, K. Char, H. Hur, and S. Lee, "Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients" Chem. Mater., 20 [2] 531-39 (2008). https://doi.org/10.1021/cm070754d
  2. N. K. Kumawat, D. Gupta, and D. Kabra, "Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes" Energy Technol., 5, 1734 - 1749 (2017) https://doi.org/10.1002/ente.201700356
  3. C. Bizzarri, F. Hundemer, J. Busch, and S. Brase, "Triplet emitters versus TADF emitters in OLEDs: A comparative study" Polyhedron, 140, 51-66 (2018) https://doi.org/10.1016/j.poly.2017.11.032
  4. K. Matsuo, and T. Yasuda, 'Boronate- and borinate-based p-systems for blue thermally activated delayed fluorescence materials", Chem. Commun., 55, 2501-2504 (2019) https://doi.org/10.1039/c8cc10282a
  5. Michael Y. Wong, Eli Zysman-Colman, "Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)", Beilstein J. Org. Chem., 14, 282-308 (2018) https://doi.org/10.3762/bjoc.14.18
  6. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, "Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes" Appl. Phys. Lett., 98 [8] 083302 (2011) https://doi.org/10.1063/1.3558906
  7. Ye Tao , Kai Yuan, Ting Chen , Peng Xu , Huanhuan Li, Runfeng Chen, Chao Zheng, Lei Zhang, and Wei Huang, "Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics", Adv. Mater., 26(47), 7931-7958 (2014) https://doi.org/10.1002/adma.201402532
  8. T. Nakagawa, S. Y. Ku, K. T. Wong, and C. Adachi, "Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure", Chem. Commun., 48, 9580 (2012) https://doi.org/10.1039/c2cc31468a
  9. G. Mehes, H. Nomura, Q. S. Zhang, T. Nakagawa, and C. Adachi, "Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence", Angew. Chem. Int. Edit., 51, 11311 (2012) https://doi.org/10.1002/anie.201206289
  10. H . Uoyama, K. Goushi, K. Shizu, H. Nomura, and C . Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence", Nature, 492, 234 (2012) https://doi.org/10.1038/nature11687
  11. Y. J. Cho, S. K. Jeon, S.-S. Lee, E. Yu, and J. Y. Lee, "Donor Interlocked Molecular Design for Fluorescencelike Narrow Emission in Deep Blue Thermally Activated Delayed Fluorescent Emitters" Chem. Mater., 28, 5400 (2016) https://doi.org/10.1021/acs.chemmater.6b01484
  12. C.-Y. Chan, M. Tanaka, H. Nakanotani, and C. Adachi, "Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4" Nat. Commun., 9, 5036 (2018) https://doi.org/10.1038/s41467-018-07482-6
  13. D. Zhang, L. Duan, C. Li , Y. Li, H. Li, D. Zhang, and Y. Qiu, "High-Efficiency Fluorescent Organic Light- Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy" Adv. Mater., 26, 5050 (2014) https://doi.org/10.1002/adma.201401476
  14. K. Sato, K. Shizu, K. Yoshimura, A. Kawada, H. Miyazaki, and C. Adachi, "Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light-Emitting Diodes" Phys. Rev. Lett., 110, 247401 (2013) https://doi.org/10.1103/physrevlett.110.247401
  15. K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji, and C. Adachi, "Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States" J. Phys. Chem. C, 119, 26283 (2015) https://doi.org/10.1021/acs.jpcc.5b07798
  16. K. Shizu, M. Uejima, H. Nomura, T. Sato, K. Tanaka, H. Kaji, and C. Adachi, "Enhanced Electroluminescence from a Thermally Activated Delayed-Fluorescence Emitter by Suppressing Nonradiative Decay" Phys. Rev. Appl., 3, 014001 (2015) https://doi.org/10.1103/PhysRevApplied.3.014001
  17. H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, and C. Adachi, "Purely organic electroluminescent material realizing 100% conversion from electricity to light" Nat. Commun., 6, 8476 (2015) https://doi.org/10.1038/ncomms9476
  18. Y. Kitamoto, T. Namikawa, D. Ikemizu, Y. Miyata, T. Suzuki, H. Kita, T. Sato, and S. Oi, "Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes" J. Mater. Chem. C, 3, 9122 (2015) https://doi.org/10.1039/C5TC01380A
  19. K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, and H. Kaji, "Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20" Angew. Chem., Int. Ed. Engl., 54, 15231 (2015) https://doi.org/10.1002/anie.201508270
  20. M. Numata, T. Yasuda, and C. Adachi, "High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units" Chem. Commun., 51, 9443 (2015) https://doi.org/10.1039/c5cc00307e
  21. T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, and T. Ikuta, "Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect" Adv. Mater., 28, 2777 (2016) https://doi.org/10.1002/adma.201505491
  22. T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. C.-Cheng, H.-W. Lin, R.-S. Liu, and C.-H. Cheng, "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off" Nature Photonics, 12, 235-240 (2018) https://doi.org/10.1038/s41566-018-0112-9
  23. D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, and J. H. Kwon, "Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors" Nature Photonics, 13, 540-546 (2019) https://doi.org/10.1038/s41566-019-0415-5
  24. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence" Nat. Photon. , 8, 326 (2014) https://doi.org/10.1038/nphoton.2014.12
  25. P. L. dos Santos, J. S. Ward, M. R. Bryce, and A. P. Monkman,"Using Guest-Host Interactions To Optimize the Efficiency of TADF OLEDs" J. Phys. Chem. Lett., 7, 3341-3346 (2016) https://doi.org/10.1021/acs.jpclett.6b01542
  26. S. Y. Lee, C. Adachi, and T. Yasuda, "High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives" Adv. Mater., 28, 4626-4631 (2016) https://doi.org/10.1002/adma.201506391
  27. S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, and C. Adachi, "Luminous butterflies: efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs" Angew. Chem. Int. Edit., 53, 6402 (2014) https://doi.org/10.1002/anie.201402992
  28. K. Nasu, T. Nakagawa, H. Nomura, C. J. Lin, C. H. Cheng, M. R. Tseng, T. Yasuda, and C. Adachi, "A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence" Chem. Commun., 49, 10385 (2013). https://doi.org/10.1039/c3cc44179b
  29. Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, and C. Adachi, "Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence" J. Am. Chem. Soc., 136, 18070 (2014) https://doi.org/10.1021/ja510144h
  30. P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang, C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin, and C. H. Cheng, "A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes" J. Am. Chem. Soc., 138, 628 (2016) https://doi.org/10.1021/jacs.5b10950