DOI QR코드

DOI QR Code

Hot Filament Chemical Vapor Deposition of Crystalline Boron Films

  • Soto, Gerardo (Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia)
  • Received : 2019.03.06
  • Accepted : 2019.04.23
  • Published : 2019.05.31

Abstract

This article reports on the conditions required for the growth of crystalline boron films on silicon substrates by hot filament chemical vapor deposition method. The reactive gas was 3% diborane diluted in hydrogen. The films were characterized by optical, electronic, and atomic force microscopies; x-ray diffraction; and energy dispersive, electron energy loss, Raman, x-ray photoelectron, and Auger spectroscopies. The parameters that affect the morphologies of the films have been investigated. It was concluded that faceted crystals are produced at low B2H6 flows and working pressures below 200 mT. α-boron is produced between 530 and 600℃. Deposition outside this range produces thin films with a wide variety of morphologies. This result indicates that the films crystallize through a process called "abnormal or discontinuous grain growth." It is assumed that this is due to the anisotropic surfaces of boron allotropes.

Keywords

References

  1. K. Shirai, "Electronic Structures and Mechanical Properties of Boron and Boron-Rich Crystals (Part I)," J. Superhard Mater., 32 [3] 205-225 (2010). https://doi.org/10.3103/S1063457610030068
  2. G. Akopov, M. T. Yeung, and R. B. Kaner, "Rediscovering the Crystal Chemistry of Borides," Adv. Mater., 29 [21] 1604506 (2017). https://doi.org/10.1002/adma.201604506
  3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39K in Magnesium Diboride," Nature, 410 [6824] 63-4 (2001). https://doi.org/10.1038/35065039
  4. H. Caliskan, "Selection of Boron Based Tribological Hard Coatings Using Multi-Criteria Decision Making Methods," Mater. Des., 50 742-49 (2013). https://doi.org/10.1016/j.matdes.2013.03.059
  5. D. Dellasega, V. Russo, A. Pezzoli, C. Conti, N. Lecis, E. Besozzi, M. Beghi, C. E. Bottani, and M. Passoni, "Boron Films Produced by High Energy Pulsed Laser Deposition," Mater. Des., 134 35-43 (2017). https://doi.org/10.1016/j.matdes.2017.08.025
  6. W. Gao, Crytal Growth of Alpha-Rhombohedral Boron, in Ph.D. Thesis, Kansas State University, Kansas, 2010.
  7. G. Parakhonskiy, N. Dubrovinskaia, E. Bykova, R. Wirth, and L. Dubrovinsky, "Experimental Pressure-Temperature Phase Diagram of Boron: Resolving the Long-Standing Enigma," Sci. Rep., 1 [1] 96 (2011). https://doi.org/10.1038/srep00096
  8. O. O. Kurakevych, Y. Le Godec, T. Hammouda, and C. Goujon, "Comparison of Solid State Crystallization of Boron Polymorphs at Ambient and High Pressures," High Pressure Res., 32 [1] 30-8 (2012). https://doi.org/10.1080/08957959.2011.635145
  9. G. Parakhonskiy, N. Dubrovinskaia, L. Dubrovinsky, S. Mondal, and S. Van Smaalen, "High Pressure Synthesis of Single Crystals of A-Boron," J. Cryst. Growth, 321 162-66 (2011). https://doi.org/10.1016/j.jcrysgro.2011.02.036
  10. K. Kamimura, M. Ohkubo, T. Shinomiya, M. Nakao, and Y. Onuma, "Preparation and Properties of Boron Thin Films," J. Solid State Chem., 133 [1] 100-3 (1997). https://doi.org/10.1006/jssc.1997.7323
  11. D. Agaogullari, O. Balci, I. Duman, and M. L. Ovecoglu, "Synthesis of ${\alpha}$- and ${\beta}$-Rhombohedral Boron Powders via Gas Phase Thermal Dissociation of Boron Trichloride by Hydrogen," Metall. Mater. Trans. B, 42 [3] 568-74 (2011). https://doi.org/10.1007/s11663-011-9503-8
  12. K. Kamimura, T. Nagaoka, T. Shinomiya, M. Nakao, Y. Onuma, and M. Makimura, "Preparation and Properties of Boron Thin Films," Thin Solid Films, 343-344 342-44 (1999). https://doi.org/10.1016/S0040-6090(98)01676-9
  13. Y. Yang, B. Ren, J. Huang, K. Tang, J. Wang, H. Yu, and L. Wang, "Influences of Working Power on Properties for Boron Films Deposited by R. F. Magnetron Sputtering," Key Eng. Mater., 633 210-13 (2015). https://doi.org/10.4028/www.scientific.net/kem.633.210
  14. Z. Pan, Y. Yang, J. Huang, B. Ren, H. Yu, R. Xu, H. Ji, L. Wang, and L. Wang, "Study on the Preparation of Boron-Rich Film by Magnetron Sputtering in Oxygen Atmosphere," Appl. Surf. Sci., 388 392-95 (2016). https://doi.org/10.1016/j.apsusc.2015.12.125
  15. L. B. Bayu Aji, A. A. Baker, J. H. Bae, A. M. Hiszpanski, E. Stavrou, S. K. McCall, and S. O. Kucheyev, "Degradation of Ultra-Thin Boron Films in Air," Appl. Surf. Sci., 448 498-501 (2018). https://doi.org/10.1016/j.apsusc.2018.04.126
  16. M. Olivas-Martinez, M. Perez-Tello, R. Cabanillas-Lopez, O. Contreras-Lopez, G. Soto-Herrera, and F. Castillon-Barraza, "A Computational Model for the Hot-Filament Chemical Vapour Deposition Process to Produce Diamond Films," Modell. Simul. Mater. Sci. Eng., 15 [3] 237-61 (2007). https://doi.org/10.1088/0965-0393/15/3/004
  17. T. Zhang, F. H. Sun, B. Shen, and Z. M. Zhang, "CVD Micron Diamond Powders," Adv. Mater. Res., 797 495-99 (2013). https://doi.org/10.4028/www.scientific.net/AMR.797.495
  18. A. Contin, K. A. Alves, R. A. Campos, G. de Vasconcelos, D. D. Damm, V. J. Trava-Airoldi, and E. J. Corat, "Diamond Films on Stainless Steel Substrates with an Interlayer Applied by Laser Cladding," Mater. Res., 20 [2] 543-48 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0346
  19. H. Sein, W. Ahmed, C. A. Rego, A. N. Jones, M. Amar, M. Jackson, and R. Polini, "Chemical Vapour Deposition Diamond Coating on Tungsten Carbide Dental Cutting Tools," J. Phys.: Condens. Matter, 15 [39] S2961-67 (2003). https://doi.org/10.1088/0953-8984/15/39/019
  20. G. Soto, "Hot Filament Chemical Vapor Deposition of Crystalline Boron Films. Scanning Electron Micrographs", Mendeley Data, v1 (2018).
  21. G. Soto, "Hot Filament Chemical Vapor Deposition of Crystalline Boron Films. Scanning Electron Micrographs," Mendeley Data, v2, (2018). DOI: 10.17632/26dvw2pv9x.1
  22. J.-C. Arnault, T. Petit, H. Girard, A. Chavanne, C. Gesset, M. Sennour, and M. Chaigneau, "Surface Chemical Modifications and Surface Reactivity of Nanodiamonds Hydrogenated by CVD Plasma," Phys. Chem. Chem. Phys., 13 [24] 11481 (2011). https://doi.org/10.1039/c1cp20109c
  23. B. Baral, S. S. M. Chan, and R. B. Jackman, "Cleaning Thin-Film Diamond Surfaces for Device Fabrication: An Auger Electron Spectroscopic Study," J. Vac. Sci. Technol., A, 14 [4] 2303-7 (1996). https://doi.org/10.1116/1.580063
  24. L. Papagno and L. S. Caputi, "Electronic Structure of Graphite: Single Particle and Collective Excitations Studied by EELS, SEE and K Edge Loss Techniques," Surf. Sci., 125 [2] 530-38 (1983). https://doi.org/10.1016/0039-6028(83)90583-6
  25. J. F. Moulder and J. Chastain, Handbook of X-Ray Photoelectron Spectroscopy?: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corp, Eden Prairie, Minn, 1992.
  26. J. L. Hoard, R. E. Hughes, and D. E. Sands, "The Structure of Tetragonal Boron," J. Am. Chem. Soc., 80 [17] 4507-15 (1952). https://doi.org/10.1021/ja01550a019
  27. N. Vast, S. Baroni, G. Zerah, J. M. Besson, A. Polian, M. Grimsditch, and J. C. Chervin, "Lattice Dynamics of ${\alpha}$-Boron from ab-initio Calculation and Raman Scattering under High Pressure," Phys. Status Solidi, B, 198 [1] 115-19 (1996). https://doi.org/10.1002/pssb.2221980116
  28. P. Colomban and A. Slodczyk, "Raman Intensity: An Important Tool in the Study of Nanomaterials and Nanostructures," Acta Phys. Pol., A, 116 [1] 7-12 (2009). https://doi.org/10.12693/APhysPolA.116.7
  29. TEM Diffraction Analysis Program, https://projects.iq.harvard.edu/harbing/tem-diffraction-analysis-program. Accesed on 13/03/2019.
  30. C. Godet, L. Schmirgeld, L. Zuppiroli, G. Sardin, S. Gujrathi, and K. Oxorn, "Optical Properties and Chemical Reactivity of Hydrogenated Amorphous Boron Thin Films," J. Mater. Sci., 26 [23] 6408-18 (1991). https://doi.org/10.1007/BF02387822
  31. J. Z. Wu, S. H. Yun, A. Dibos, D.-K. Kim, and M. Tidrow, "Fabrication and Characterization of Boron-Related Nanowires," Microelectron. J., 34 [5-8] 463-70 (2003). https://doi.org/10.1016/S0026-2692(03)00074-0
  32. M. Hillert, "On the Theory of Normal and Abnormal Grain Growth," Acta Metall., 13 [3] 227-38 (1965). https://doi.org/10.1016/0001-6160(65)90200-2
  33. A. Recnik, M. Ceh, and D. Kolar, "Polytype Induced Exaggerated Grain Growth in Ceramics," J. Eur. Ceram. Soc., 21 [10-11] 2117-21 (2001). https://doi.org/10.1016/S0955-2219(01)00184-4

Cited by

  1. Correlation between Boron-Silicon Bonding Coordination, Oxygen Complexes and Electrical Properties for n-Type c-Si Solar Cell Applications vol.13, pp.12, 2019, https://doi.org/10.3390/en13123057