DOI QR코드

DOI QR Code

Microstructural Control of Pyrolytic Carbon Layer Deposited from Methane by Isotropic Chemical Vapor Infiltration

  • Jeong, Young-Seok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Kyoon (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Yoo, Ho Gyu (Department of Materials Science and Engineering, Korea University)
  • Received : 2019.04.19
  • Accepted : 2019.05.09
  • Published : 2019.05.31

Abstract

Pyrolytic carbon (PyC) layers were deposited using methane. The PyC layer deposited with 5% methane showed highly textured graphite, while that deposited using 100% methane showed low textured graphite. The degrees of anisotropy of the carbon layers were measured using an X-ray diffractometer, a transmission electron microscope, and a Raman spectroscope, and the results were compared with those reported previously. The orientation angles obtained from the fast Fourier transformation of the high-resolution transmission electron microscopy images and the ID/IG intensity ratios obtained from the Raman spectra were used to evaluate the anisotropy of the PyC layers.

Keywords

References

  1. J. Yin, H. B. Zhang, X. Xiong, J. L. Zuo, and H. J. Tao, "Ablation Properties of C/C-SiC Composites Tested on an Arc Heater," Solid State Sci., 13 [11] 2055-59 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.09.010
  2. N. M. Ghoniem, "High-Temperature Mechanical and Material Design for SiC Composites," J. Nucl. Mater., 191-194 515-19 (1992). https://doi.org/10.1016/S0022-3115(09)80098-6
  3. J. E. Grady, C. E. Smith, R. M. Sullivan, V. L. Wiesner, J. B. Hurst, S. M Arnold, D. Zhu, A. S. Almansour, R. T. Bhatt, S. Kalluri, and S. Raj, "Overview of ceramic matrix composite research at NASA Glenn Research Center," Proc. ECI Conf., Cleveland, OH, 2017.
  4. W. Yang, T. Noda, H. Araki, J. N. Yu, and A. Kohyama, "Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI-SiC matrix composites," Mater. Sci. Eng., 345 [1-2] 28-35 (2003). https://doi.org/10.1016/S0921-5093(02)00468-9
  5. B. Reznik, M. Guellali, D. Gerthsen, R. Oberacker, and W. Hoffmann, "Microstructure and Mechanical Properties of Carbon-Carbon Composites with Multilayered Pyrocarbon Matrix," Mater. Lett., 52 [1-2] 14-9 (2002). https://doi.org/10.1016/S0167-577X(01)00357-3
  6. O. Feron, F. Langlais, R. Naslain, and J. Thebault, "On Kinetic and Microstructural Transitions in the CVD of Pyrocarbon from Propane," Carbon, 37 [9] 1343-53 (1999). https://doi.org/10.1016/S0008-6223(98)00329-7
  7. A. Udayakumar, A. S. Ganesh, S. Raja, and M. Balasubramanian, "Effect of Intermediate Heat Treatment on Mechanical Properties of SiCf/SiC Composites with BN Interphase Prepared by ICVI," J. Eur. Ceram. Soc., 31 [6] 1145-53 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.018
  8. M. L. Lieberman and H. O. Pierson, "The Chemical Deposition of Carbon on Carbon Fibers," Carbon, 12 [3] 233-42 (1974). https://doi.org/10.1016/0008-6223(74)90065-7
  9. J. M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, "Quantitative Structural and Textural Assessment of Laminar Pyrocarbons through Raman Spectroscopy, Electron Diffraction and Few Other Techniques," Carbon, 44 [9] 1833-44 (2006). https://doi.org/10.1016/j.carbon.2005.12.029
  10. P. J. Meadows, E. Lopez-Honorato, and P. Xiao, "Fluidized Bed Chemical Vapor Deposition of Pyrolytic Carbon - II. Effect of Deposition Conditions on Anisotropy," Carbon, 47 [1] 251-62 (2009). https://doi.org/10.1016/j.carbon.2008.10.003
  11. S Bertrand, C Droillard, R Pailler, X Bourrat, and R Naslain, "TEM Structure of $(PyC/SiC)_n$ Multilayered Interphases in SiC/SiC Composites," J. Eur. Ceram. Soc., 20 [1] 1-13 (2000). https://doi.org/10.1016/S0955-2219(99)00086-2
  12. S. Bertrand, P. Forio, R. Pailler, and J. Lamon, "Hi-Nicalon/SiC Minicomposites with $(Pyrocarbon/SiC)_n$ Nanoscale Multilayered Interphases," J. Am. Ceram. Soc., 82 [9] 2465-73 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02105.x
  13. S. Pompidou and J. Lamon, "Analysis of Crack Deviation in Ceramic Matrix Composites and Multilayers Based on the Cook and Gordon Mechanism," Compos. Sci. Technol., 67 [10] 2052-60 (2007). https://doi.org/10.1016/j.compscitech.2006.11.013
  14. M. Guellali, R. Oberacker, and M. J. Hoffmann, "Influence of the Matrix Microstructure on the Mechanical Properties of CVI-Infiltrated Carbon Fiber Felts," Carbon, 43 [9] 1954-60 (2005). https://doi.org/10.1016/j.carbon.2005.03.006
  15. K. Choi and J.-W. Kim, "CFD Simulation of Chemical Vapor Deposition of Silicon Carbide in $CH_3SiCl_3-H_2$ System," Curr. Nanosci., 10 [1] 135-37 (2014). https://doi.org/10.2174/1573413709666131109003414
  16. N. Iwashita, C. R. Park, H. Fujimoto, M. Shiraishi, and M. Inagaki, "Specification for a Standard Procedure of X-Ray Diffraction Measurements on Carbon Materials," Carbon, 42 [4] 701-14 (2004). https://doi.org/10.1016/j.carbon.2004.02.008
  17. M. Seyring, A. Simon, I. Voigt, U. Ritter, and M. Rettenmayr, "Quantitative Crystallographic Analysis of Individual Carbon Nanofibers Using High Resolution Transmission Electron Microscopy and Electron Diffraction," Carbon, 116 347-55 (2017). https://doi.org/10.1016/j.carbon.2017.01.107
  18. E. Beerdsen, B. Smit, and D. Dubbeldam, "Molecular Simulation of Loading Dependent Slow Diffusion in Confined Systems," Phys. Rev. Lett., 93 [24] 24830-1-3 (2004).
  19. S. Bammidipati, G. D. Stewart, J. R. Elliott, S. A. Gokoglu, and M. J. Purdy, "Chemical Vapor Deposition of Carbon on Graphite by Methane Pyrolysis," AIChE J., 42 [11] 3123-32 (1996). https://doi.org/10.1002/aic.690421112
  20. P. Delhaes, Fibers and Composites; Vol. 2, pp. 118-21, CRC Press, Florida, 2003.
  21. B. Manoj and A. G. Kunjomana, "Study of Stacking Structure of Amorphous Carbon by X-Ray Diffraction Technique," Int. J. Electrochem. Sci., 7 [4] 3127-34 (2012).
  22. X. Bourrat, A. Fillion, R. Naslain, G. Chollon, and M. Brendle, "Regenerative Laminar Pyrocarbon," Carbon, 40 [15] 2931-45 (2002). https://doi.org/10.1016/S0008-6223(02)00230-0
  23. T. H. Simm, "Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys," Crystals, 8 [5] 1-31 (2018).
  24. Y. Kuen, R. L. V. Wal, and L. B. Andre, "Development of an HRTEM Image Analysis Method to Quantify Carbon Nanostructure," Combust. Flame, 158 [9] 1837-51 (2011). https://doi.org/10.1016/j.combustflame.2011.01.009
  25. Y. Kaburagi, A. Yoshida and Y. Hishiyama, "Chap.7 - Raman Spectroscopy," pp. 126-50 in Materials Science and Engineering of Carbon: Characterization, Ed. by I. Michio and F. Kang, Butterworth-Heinemann, Boston, 2016.
  26. A. Merlen, J. G. Buijnsters, and C. Pardanaud, "A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons," Coatings, 7 [10] 153 (2017). https://doi.org/10.3390/coatings7100153
  27. J. Y. Park, D. Kim, H.-G. Lee, W.-J. Kim, and M. Pouchon, "Oxidation Behaviors of Si Composites Tested at High Temperature in Air by an Ablation Method," J. Korean Ceram. Soc., 55 [5] 498-503 (2018). https://doi.org/10.4191/kcers.2018.55.5.03
  28. K.-M. Kim, Y. S. Hahn, S.-M. Lee, K. Choi, and J.-H. Lee, "Mechanical Properties of $C_f$/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis," J. Korean Ceram. Soc., 55 [4] 392-99 (2018). https://doi.org/10.4191/kcers.2018.55.4.11

Cited by

  1. Direct observation of the elasticity-texture relationship in pyrolytic carbon via in situ micropillar compression and digital image correlation vol.182, 2021, https://doi.org/10.1016/j.carbon.2021.06.045