DOI QR코드

DOI QR Code

Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)

  • Lee, Hae-Weon (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST)) ;
  • Ji, Ho-Il (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jong-Ho (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Byung-Kook (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST)) ;
  • Yoon, Kyung Joong (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST)) ;
  • Son, Ji-Won (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
  • Received : 2019.01.26
  • Accepted : 2019.02.20
  • Published : 2019.03.31

Abstract

Widespread commercialization of solid oxide fuel cells (SOFCs) is expected to be realized in various application fields with the advent of cost-effective fabrication of cells and stacks in high volumes. Cost-reduction efforts have focused on production yield, power density, operation temperature, and continuous manufacturing. In this article, we examine several issues associated with processing for SOFCs from the standpoint of the bimodal packing model, considering the external constraints imposed by rigid substrates. Optimum compositions of composite cathode materials with high volume fractions of the second phase (particles dispersed in matrix) have been analyzed using the bimodal packing model. Constrained sintering of thin electrolyte layers is also discussed in terms of bimodal packing, with emphasis on the clustering of dispersed particles during anisotropic shrinkage. Finally, the structural transition of dispersed particle clusters during constrained sintering has been correlated with the structural stability of thin-film electrolyte layers deposited on porous solid substrates.

Keywords

References

  1. A. Atkinson, S. Barnett, R. J. Gorte, J. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced Anodes for High-Temperature Fuel Cells," Nat. Mater., 3 [1] 17-7 (2004). https://doi.org/10.1038/nmat1040
  2. R. O'Hayre, S. W. Cha, W. Colella, and F. B Prinz, Fuel Cell Fundamentals; Wiley, 2009.
  3. K. Huang and J. B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations; Elsevier, 2009.
  4. J. T. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichrist odoulou, C. Graves, and M. B. Mogensen, "Evolution of the Electrochemical Interface in High-Temperature Fuel Cells and Electrolysers," Nat. Energy, 1 [1] 15014 (2016). https://doi.org/10.1038/nenergy.2015.14
  5. W. H. Kan and V. Thangadurai, "Challenges and Prospects of Anodes for Solid Oxide Fuel Cells (SOFCs)," Ionics, 21 [2] 301-18 (2015). https://doi.org/10.1007/s11581-014-1334-6
  6. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  7. J. Huijsmans, F. Van Berkel, and G. Christie, "Intermediate Temperature SOFC-a Promise for the 21st Century," J. Power Sources, 71 [1-2] 107-10 (1998). https://doi.org/10.1016/S0378-7753(97)02789-4
  8. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, 1995.
  9. A. S. Thorel, "Tape Casting Ceramics for High Temperature Fuel Cell Applications, Ceramic Materials," pp. 1-68 in Ceramic Materials. Ed. By W. Wunderlich, Sciyo, 2010.
  10. A. B. Stambouli and E. Traversa, "Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy," Renewable Sustainable Energy Rev., 6 [5] 433-55 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X
  11. S. C. Singhal, "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152 405-10 (2002). https://doi.org/10.1016/S0167-2738(02)00349-1
  12. B. Zhu, "Functional Ceria-Salt-Composite Materials for Advanced ITSOFC Applications," J. Power Sources, 114 [1] 1-9 (2003). https://doi.org/10.1016/S0378-7753(02)00592-X
  13. D. Nikbin, "Micro SOFCs: Why Small is Beautiful," Fuel Cell Review, 3 [2] 21-4 (2006).
  14. S. C. Singhal, "Solid Oxide Fuel Cells," Electrochem. Soc. Interface, 16 41-4 (2007). https://doi.org/10.1149/2.F06074IF
  15. S. C. Singhal and K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications; Elsevier, 2003.
  16. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance; CRC Press, Taylor & Francis Group, 2016.
  17. L. Fan, C. Wang, M. Chen, and B. Zhu, "Recent Development of Ceria-Based (Nano) Composite Materials for Low Temperature Ceramic Fuel Cells and Electrolyte-Free Fuel Cells," J. Power Sources, 234 154-74 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.138
  18. V. Haanappel, "Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Julich GmbH, Germany," pp. 247-74 in Fuel Cell Science and Engineering. Ed. by D. Stolten and B. Emonts, Wiley-VCH Verlag GmbH & Co. KGaA; 2012.
  19. A. Bieberle-Hutter, D. Beckel, U. P. Muecke, J. L. Rupp, A. Infortuna, and L. J. Gauckler, "Micro-Solid Oxide Fuel Cells as Battery Replacement," MST News, 4 12 (2005).
  20. D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, J. L. Rupp, and L. J. Gauckler, "Thin Films for Micro Solid Oxide Fuel Cells," J. Power Sources, 173 [1] 325-45 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.070
  21. N. Q. Minh, "Solid Oxide Fuel Cell Technology-Features and Applications," Solid State Ionics, 174 [1-4] 271-77 (2004). https://doi.org/10.1016/j.ssi.2004.07.042
  22. F. Tietz, H.-P. Buchkremer, and D. Stover, "Components Manufacturing for Solid Oxide Fuel Cells," Solid State Ionics, 152 373-81 (2002). https://doi.org/10.1016/S0167-2738(02)00344-2
  23. Y. Leng, S. Chan, K. Khor, and S. Jiang, "Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte," Int. J. Hydrogen Energy, 29 [10] 1025-33 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.009
  24. L. Blum, L. B. De Haart, J. Malzbender, N. H. Menzler, J. Remmel, and R. Steinberger-Wilckens, "Recent Results in Jülich Solid Oxide Fuel Cell Technology Development," J. Power Sources, 241 477-85 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.110
  25. C. Sun and U. Stimming, "Recent Anode Advances in Solid Oxide Fuel Cells," J. Power Sources, 171 [2] 247-60 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.086
  26. R. Scataglini, M. Wei, A. Mayyas, S. Chan, T. Lipman, and M. Santarelli, "A Direct Manufacturing Cost Model for Solid-Oxide Fuel Cell Stacks," Fuel Cells, 17 [6] 825-42 (2017). https://doi.org/10.1002/fuce.201700012
  27. J. Otomo, J. Oishi, T. Mitsumori, H. Iwasaki, and K. Yamada, "Evaluation of Cost Reduction Potential for 1 kW Class SOFC Stack Production: Implications for SOFC Technology Scenario," Int. J. Hydrogen Energy, 38 [33] 14337-47 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.110
  28. K. Sopian and W. R. W. Daud, "Challenges and Future Developments in Proton Exchange Membrane Fuel Cells," Renewable energy, 31 [5] 719-27 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  29. I. Bar-On, R. Kirchain, and R. Roth, "Technical Cost Analysis for PEM Fuel Cells," J. Power Sources, 109 [1] 71-5 (2002). https://doi.org/10.1016/S0378-7753(02)00062-9
  30. V. Mehta and J. S. Cooper, "Review and Analysis of PEM Fuel Cell Design and Manufacturing," J. Power Sources, 114 [1] 32-53 (2003). https://doi.org/10.1016/S0378-7753(02)00542-6
  31. B. D. James, A. B. Spisak, and W. G. Colella, Manufacturing Cost Analysis of Stationary Fuel Cell Systems; Strategic Analysis Inc. Arlington, VA, 2012.
  32. R. Mueke, "Introduction to SOFC Technologies: Manufacturing of SOFCs," Joint European Summer School for Fuel Cell and Hydrogen Technology, Viterbo, Italy, 2011.
  33. R. Knibbe, J. Hjelm, M. Menon, N. Pryds, M. Sogaard, H. J. Wang, and K. Neufeld, "Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC," J. Am. Ceram. Soc., 93 [9] 2877-83 (2010). https://doi.org/10.1111/j.1551-2916.2010.03763.x
  34. A. Tsoga, A. Gupta, A. Naoumidis, and P. Nikolopoulos, "Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for SOFC Technology," Acta Mater., 48 [18-19] 4709-14 (2000). https://doi.org/10.1016/S1359-6454(00)00261-5
  35. X.-D. Zhou, B. Scarfino, and H. U. Anderson, "Electrical Conductivity and Stability of Gd-Doped Ceria/Y-doped Zirconia Ceramics and Thin Films," Solid State Ionics, 175 [1-4] 19-22 (2004). https://doi.org/10.1016/j.ssi.2004.09.040
  36. G. C. Kostogloudis and C. Ftikos, "Chemical Compatibility of $RE_{1−x}Sr_xMnO_{3{\pm}{\delta}}$ (RE= La, Pr, Nd, Gd, 0${\leq}$x${\leq}$0.5) with Yttria Stabilized Zirconia Solid Electrolyte," J. Eur. Ceram. Soc., 18 [12] 1707-10 (1998). https://doi.org/10.1016/S0955-2219(98)00096-X
  37. J. Labrincha, F. Marques, and J. Frade, "Protonic and Oxygen-Ion Conduction in $SrZrO_3$-Based Materials," J. Mater. Sci., 30 [11] 2785-92 (1995). https://doi.org/10.1007/BF00349644
  38. S. P. Simner, J. P. Shelton, M. D. Anderson, and J. W. Stevenson, "Interaction between $La(Sr)FeO_3$ SOFC Cathode and YSZ Electrolyte," Solid State Ionics, 161 [1-2] 11-8 (2003). https://doi.org/10.1016/S0167-2738(03)00158-9
  39. F. Tietz, D. Sebold, A. Brisse, and J. Schefold, "Degradation Phenomena in a Solid Oxide Electrolysis Cell after 9000 h of Operation," J. Power Sources, 223 129-35 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.061
  40. H. Shi, R. Ran, and Z. Shao, "Wet Powder Spraying Fabrication and Performance Optimization of IT-SOFCs with Thin-Film ScSZ Electrolyte," Int. J. Hydrogen Energy, 37 [1] 1125-32 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.077
  41. T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, and H. Shirahama, "Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes," Solid State Ionics, 174 [1-4] 163-74 (2004). https://doi.org/10.1016/j.ssi.2004.06.017
  42. D. Wang, J. Wang, C. He, Y. Tao, C. Xu, and W. G. Wang, "Preparation of a $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$ Interlayer for Intermediate-Temperature Solid Oxide Fuel Cells by Spray Coating," J. Alloys Compd., 505 [1] 118-24 (2010). https://doi.org/10.1016/j.jallcom.2010.06.017
  43. Z. Gao, V. Y. Zenou, D. Kennouche, L. Marks, and S. A. Barnett, "Solid Oxide Cells with Zirconia/Ceria Bi-Layer Electrolytes Fabricated by Reduced Temperature Firing," J. Mater. Chem. A, 3 [18] 9955-64 (2015). https://doi.org/10.1039/C5TA01964H
  44. D. Chen, G. Yang, Z. Shao, and F. Ciucci, "Nanoscaled Sm-Doped $CeO_2$ Buffer Layers for Intermediate-Temperature Solid Oxide Fuel Cells," Electrochem. Commun., 35 131-34 (2013). https://doi.org/10.1016/j.elecom.2013.08.017
  45. H.-S. Noh, K. J. Yoon, B.-K. Kim, H.-J. Je, H.-W. Lee, J.-H. Lee, and J.-W. Son, "The Potential and Challenges of Thin-Film Electrolyte and Nanostructured Electrode for Yttria-Stabilized Zirconia-Base Anode-Supported Solid Oxide Fuel Cells," J. Power Sources, 247 105-11 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.072
  46. T. Tsai, E. Perry, and S. Barnett, "Low-Temperature Solid-Oxide Fuel Cells Utilizing Thin Bilayer Electrolytes," J. Electrochem. Soc., 144 [5] L130-32 (1997). https://doi.org/10.1149/1.1837635
  47. D.-H. Myung, J. Hong, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee, and J.-W. Son, "The Effect of an Ultra-Thin Zirconia Blocking Layer on the Performance of a 1-${\mu}m$-Thick Gadolinia-Doped Ceria Electrolyte Solid-Oxide Fuel Cell," J. Power Sources, 206 91-6 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.117
  48. Z. Lu, J. Hardy, J. Templeton, J. Stevenson, D. Fisher, N. Wu, and A. Ignatiev, "Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition," J. Power Sources, 210 292-96 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.036
  49. E. O. Oh, C. M. Whang, Y. R. Lee, S. Y. Park, D. H. Prasad, K. J. Yoon, J. W. Son, J. H. Lee, and H. W. Lee, "Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD)," Adv. Mater., 24 [25] 3373-77 (2012). https://doi.org/10.1002/adma.201200505
  50. E.-O. Oh, C.-M. Whang, Y.-R. Lee, J.-H. Lee, K. J. Yoon, B.-K. Kim, J.-W. Son, J.-H. Lee, and H.-W. Lee, "Thin Film Yttria-Stabilized Zirconia Electrolyte for Intermediate- Temperature Solid Oxide Fuel Cells (IT-SOFCs) by Chemical Solution Deposition," J. Eur. Ceram. Soc., 32 [8] 1733-41 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.01.021
  51. E.-O. Oh, C.-M. Whang, Y.-R. Lee, S.-Y. Park, D. H. Prasad, K. J. Yoon, B.-K. Kim, J.-W. Son, J.-H. Lee, and H.-W. Lee, "Fabrication of Thin-Film Gadolinia-Doped Ceria (GDC) Interdiffusion Barrier Layers for Intermediate- Temperature Solid Oxide Fuel Cells (IT-SOFCs) by Chemical Solution Deposition (CSD)," Ceram. Int., 40 [6] 8135-42 (2014). https://doi.org/10.1016/j.ceramint.2014.01.008
  52. X. Zhang and M. Robertson, C. Deces-Petit, Y. Xie, R. Hui, S. Yick, E. Styles, J. Roller, O. Kesler, R. Maric, "NiO-YSZ Cermets Supported Low Temperature Solid Oxide Fuel Cells," J. Power Sources, 161 [1] 301-7 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.057
  53. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  54. O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45 [15-16] 2423-35 (2000). https://doi.org/10.1016/S0013-4686(00)00330-3
  55. S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135 [1-4] 305-13 (2000). https://doi.org/10.1016/S0167-2738(00)00452-5
  56. L. Blum, L. De Haart, J. Malzbender, N. Margaritis, and N. H. Menzler, "Anode-Supported Solid Oxide Fuel Cell Achieves 70000 Hours of Continuous Operation," Energy Technol., 4 [8] 939-42 (2016). https://doi.org/10.1002/ente.201600114
  57. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. J. S. O'Hayre, "Readily Processed Protonic Ceramic Fuel Cells with High Performance at Low Temperatures," Science, 349 [6254] 1321-26 (2015). https://doi.org/10.1126/science.aab3987
  58. H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K. J. Yoon, H. Kim, D. Shin, H.-I. Ji, and J.-H. Lee, "$A5{\times}5cm^2$ Protonic Ceramic Fuel Cell with a Power Density of $1.3Wcm^{-2}$ at $600^{\circ}C$," Nat. Energy, 3 [10] 870 (2018). https://doi.org/10.1038/s41560-018-0230-0
  59. F. Han, R. Mucke, T. Van Gestel, A. Leonide, N. H. Menzler, H. P. Buchkremer, and D. Stover, "Novel High-Performance Solid Oxide Fuel Cells with Bulk Ionic Conductance Dominated Thin-Film Electrolytes," J. Power Sources, 218 157-62 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.087
  60. J.-D. Kim, G.-D. Kim, J.-W. Moon, H.-W. Lee, K.-T. Lee, and C.-E. Kim, "The Effect of Percolation on Electrochemical Performance," Solid State Ionics, 133 [1-2] 67-77 (2000). https://doi.org/10.1016/S0167-2738(00)00681-0
  61. M. Park, H. Y. Jung, J. Y. Kim, H. Kim, K. J. Yoon, J.-W. Son, J.-H. Lee, B.-K. Kim, and H.-W. Lee, "Effects of Mixing State of Composite Powders on Sintering Behavior of Cathode for Solid Oxide Fuel Cells," Ceram. Int., 43 [15] 11642-47 (2017). https://doi.org/10.1016/j.ceramint.2017.05.347
  62. V. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold, and F. Tietz, "Optimisation of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs," J. Power Sources, 141 [2] 216-26 (2005). https://doi.org/10.1016/j.jpowsour.2004.09.016
  63. H. S. Song, W. H. Kim, S. H. Hyun, J. Moon, J. Kim, and H.-W. Lee, "Effect of Starting Particulate Materials on Microstructure and Cathodic Performance of Nanoporous LSM-YSZ Composite Cathodes," J. Power Sources, 167 [2] 258-64 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.095
  64. M. J. Jorgensen, S. Primdahl, C. Bagger, and M. Mogensen, "Effect of Sintering Temperature on Microstructure and Performance of LSM-YSZ Composite Cathodes," Solid State Ionics, 139 [1-2] 1-11 (2001). https://doi.org/10.1016/s0167-2738(00)00818-3
  65. F. F. Lange, "Powder Processing Science and Technology for Increased Reliability," J. Am. Ceram. Soc., 72 [1] 3-15 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
  66. M. D. Sacks and T. Y. Tseng, "Preparation of $SiO_2$ Glass from Model Powder Compacts: II, Sintering," J. Am. Ceram. Soc., 67 [8] 532-37 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19165.x
  67. H. W. Lee and M. D. Sacks, "Pressureless Sintering of SiC-Whisker-Reinforced $Al_2O_3$ Composites: I, Effect of Matrix Powder Surface Area," J. Am. Ceram. Soc., 73 [7] 1884-93 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05240.x
  68. T. S. Yeh and M. D. Sacks, "Effect of Green Microstructure on Sintering of Alumina," Ceramic. Trans., 7 309-31 (1990).
  69. L. C. De Jonghe, M. N. Rahaman, and C. J. Hsueh, "Transient Stresses in Bimodal Compacts during Sintering," Acta Mater., 34 [7] 1467-71 (1986). https://doi.org/10.1016/0001-6160(86)90034-9
  70. M. W. Weiser and L. C. De Jonghe, "Inclusion Size and Sintering of Composite Powders," J. Am. Ceram. Soc., 71 [3] C125-27 (1988).
  71. O. Sudre and F. F. Lange, "Effect of Inclusions on Densification: I, Microstructural Development in an $Al_2O_3$ Matrix Containing a High Volume Fraction of $ZrO_2$ Inclusions," J. Am. Ceram. Soc., 75 [3] 519-24 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07836.x
  72. O. Sudre, G. Bao, B. Fan, F. F. Lange, and A. G. Evans, "Effect of Inclusions on Densification: II, Numerical Model," J. Am. Ceram. Soc., 75 [3] 525-31 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07837.x
  73. O. Sudre and F. F. Lange, "The Effect of Inclusions on Densification; III, the Desintering Phenomenon," J. Am. Ceram. Soc., 75 [12] 3241-51 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04417.x
  74. M. Rahaman and L. C. De Jonghe, "Effect of Rigid Inclusions on the Sintering of Glass Powder Compacts," J. Am. Ceram. Soc., 70 [12] C348-51 (1987).
  75. D. Stauer, A. Aharony, Introduction to Percolation Theory; Taylor and Francis, London, 1994.
  76. M. Sahini and M. Sahimi, Applications of Percolation Theory; CRC Press, 2014.
  77. S. Timoshenko and J. N. Goodier, Theory of Elasticity; McGraw-Hill, New York, 1982.
  78. R. M. German, "Prediction of Sintered Density for Bimodal Powder Mixtures," Metal. Trans. A, 23 [5] 1455-65 (1992). https://doi.org/10.1007/BF02647329
  79. F. F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2 [1] 59-65 (1987). https://doi.org/10.1557/JMR.1987.0059
  80. H.-W. Lee, M. Park, J. Hong, H. Kim, K. J. Yoon, J.-W. Son, J.-H. Lee, and B.-K. Kim, "Constrained Sintering in Fabrication of Solid Oxide Fuel Cells," Materials, 9 [8] 675 (2016). https://doi.org/10.3390/ma9080675
  81. J. V. Milewski, "The Combined Packing of Rods and Spheres in Reinforcing Plastics," Ind. Eng. Chem. Prod. Res. Dev., 17 [4] 363-66 (1978). https://doi.org/10.1021/i360068a016
  82. J. V. Milewski, "Efficient Use of Whiskers in the Reinforcement of Ceramics," Adv. Ceram. Mat., 1 36-41 (1986).
  83. R. M. German, Particle Packing Characteristics; pp. 135-80, Metal Powder Industries Federation, Princeton, 1989.
  84. J. R. Wilson, A. T. Duong, M. Gameiro, H.-Y. Chen, K. Thornton, D. R. Mumm, and S. A. Barnett, "Quantitative Three-Dimensional Microstructure of a Solid Oxide Fuel Cell Cathode," Electrochem. Commun., 11 [5] 1052-56 (2009). https://doi.org/10.1016/j.elecom.2009.03.010
  85. V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999). https://doi.org/10.1016/S0167-2738(99)00108-3
  86. E. P. Murray, M. Sever, and S. A. Barnett, "Electrochemical Performance of (La, Sr)(Co, Fe)$O_3$-(Ce, Gd)$O_3$ Composite Cathodes," Solid State Ionics, 148 [1-2] 27-34 (2002). https://doi.org/10.1016/S0167-2738(02)00102-9
  87. J. Moon, J.-A. Park, S.-J. Lee, and T. Zyung, "Insight into the Shear-Induced Ordering of Colloidal Particles by a Spin-Coating Method," Jpn. J. Appl. Phys., 47 [10R] 7968 (2008). https://doi.org/10.1143/JJAP.47.7968
  88. M. D. Sacks, "Properties of Silicon Suspensions and Cast Bodies," Am. Ceram. Soc. Bull., 63 [12] 1510 (1984).
  89. D. J. Jeffrey and A. Acrivos, "The Rheological Properties of Suspensions of Rigid Particles," AlChE J., 22 [3] 417-32 (1976). https://doi.org/10.1002/aic.690220303
  90. W. H. Boersma, J. Laven, and H. N. Stein, "Shear Thickening (Dilatancy) in Concentrated Dispersions," AlChE J., 36 [3] 321-32 (1990). https://doi.org/10.1002/aic.690360302
  91. R. L. Hoffman, "Interrelationships of Particle Structure and Flow in Concentrated Suspensions," MRS Bull., 16 [8] 32-7 (1991). https://doi.org/10.1557/S088376940005630X
  92. D. J. Green, O. Guillon, and J. Rodel, "Constrained Sintering: A Delicate Balance of Scales," J. Eur. Ceram. Soc., 28 [7] 1451-66 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.012
  93. O. Guillon, S. Kraus, and J. Rodel, "Influence of Thickness on the Constrained Sintering of Alumina Films," J. Eur. Ceram. Soc., 27 [7] 2623-27 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.007
  94. O. Guillon, L. Weiler, and J. Rödel, "Anisotropic Microstructural Development during the Constrained Sintering of Dip-Coated Alumina Thin Films," J. Am. Ceram. Soc., 90 [5] 1394-400 (2007). https://doi.org/10.1111/j.1551-2916.2007.01565.x
  95. J. Bernal and J. Mason, "Packing of Spheres: Co-Ordination of Randomly Packed Spheres," Nature, 188 [4754] 910-11 (1960). https://doi.org/10.1038/188910a0
  96. W. M. Visscher and M. Bolsterli, "Random Packing of Equal and Unequal Spheres in Two and Three Dimensions," Nature, 239 [5374] 504-7 (1972). https://doi.org/10.1038/239504a0
  97. E. Tory, N. Cochrane, and S. R. Waddell, "Anisotropy in Simulated Random Packing of Equal Spheres," Nature, 220 [5171] 1023-24 (1968). https://doi.org/10.1038/2201023a0
  98. R. Zallen, The Physics of Amorphous Solids; John Wiley & Sons, 2008.
  99. G. W. Scherer, "Viscous Sintering of Particle-Filled Composites," Ceram. Bull., 70 [6] 1059-63 (1991).
  100. K. R. Iler, The Chemistry of Silica; pp. 480−488, John Wiley & Sons, New York, 1979.
  101. P. Plonczak, M. Joost, J. Hjelm, M. Sogaard, M. Lundberg, and P. V. Hendriksen, "A High Performance Ceria Based Interdiffusion Barrier Layer Prepared by Spin-Coating," J. Power Sources, 196 [3] 1156-62 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.108
  102. R. K. Bordia and A. Jagota, "Crack Growth and Damage in Constrained Sintering Films," J. Am. Ceram. Soc., 76 [10] 2475-85 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03969.x
  103. F. F. Lange, "Processing-Related Fracture Origins: I, Observations in Sintered and Isostatically Hot-Pressed $A1_2O_3/ZrO_2$ Composites," J. Am. Ceram. Soc., 66 [6] 396-98 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10068.x
  104. F. F. Lange, "Densification of Powder Rings Constrained by Dense Cylindrical Cores," Acta Metall., 37 [2] 697-704 (1989). https://doi.org/10.1016/0001-6160(89)90253-8
  105. R. Bordia and R. Raj, "Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate," J. Am. Ceram. Soc., 68 [6] 287-92 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15227.x
  106. G. W. Scherer and T. Garino, "Viscous Sintering on a Rigid Substrate," J. Am. Ceram. Soc., 68 [4] 216-20 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15300.x
  107. C. H. Hsueh, "Sintering of a Ceramic Film on a Rigid Substrate," Scripta Metall., 19 [10] 1213-17 (1985). https://doi.org/10.1016/0036-9748(85)90240-6
  108. R. Zuo, E. Aulbach, and J. Rodel, "Viscous Poisson's Coefficient Determined by Discontinuous Hot Forging," J. Mater. Res., 18 [9] 2170-76 (2003). https://doi.org/10.1557/JMR.2003.0303
  109. P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects," J. Am. Ceram. Soc., 80 [8] 1929-39 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03075.x
  110. P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation," J. Am. Ceram. Soc., 80 [8] 1940-48 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03076.x
  111. T. V. Gestel, D. Sebold, W. A. Meulenberg, and H.-P. Buchkremer, "Development of Thin-Film Nano-Structured Electrolyte Layers for Application in Anode-Supported Solid Oxide Fuel Cells," Solid State Ionics, 179 [11-12] 428-37 (2008). https://doi.org/10.1016/j.ssi.2008.02.010
  112. T. V. Gestel, D. Sebold, and H. P. Buchkremer, "Processing of 8YSZ and CGO Thin Film Electrolyte Layers for Intermediate- and Low-Temperature SOFCs," J. Eur. Ceram. Soc., 35 [5] 1505-15 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.11.017
  113. Y. Pan, J. Zhu, M. Z. Hu, and E. A. Payzant, "Processing of YSZ Thin Films on Dense and Porous Substrates," Surf. Coat. Technol., 200 [5-6] 1242-47 (2005). https://doi.org/10.1016/j.surfcoat.2005.07.083
  114. K. Mehta, R. Xu, and A. V. Virkar, "Two-Layer Fuel Cell Electrolyte Structure by Sol-Gel Processing," J. Sol-Gel Sci. Technol., 11 [2] 203-7 (1998). https://doi.org/10.1023/A:1008605816691
  115. H. Lin, C. Ding, K. Sato, Y. Tsutai, H. Ohtaki, M. Iguchi, C. Wada, and T. Hashida, "Preparation of SDC Electrolyte Thin Films on Dense and Porous Substrates by Modified Sol-Gel Route," Mater. Sci. Eng., B, 148 [1-3] 73-6 (2008). https://doi.org/10.1016/j.mseb.2007.09.039
  116. C. Peters, A. Weber, B. Butz, D. Gerthsen, and E. Ivers-Tiffee, "Grain-Size Effects in YSZ Thin-Film Electrolytes," J. Am. Ceram. Soc., 92 [9] 2017-24 (2009). https://doi.org/10.1111/j.1551-2916.2009.03157.x
  117. K. Lee, J. Kang, S. Jin, S. Lee, and J. Bae, "A Novel Sol-Gel Coating Method for Fabricating Dense Layers on Porous Surfaces Particularly for Metal-Supported SOFC Electrolyte," J. Int. Hydrogen Energy, 42 [9] 6220-30 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.004
  118. L. C. De Jonghe, C. P. Jacobson, and S. J. Visco, "Supported Electrolyte Thin Film Synthesis of Solid Oxide Fuel Cells," Annu. Rev. Mater. Res., 33 [1] 169-82 (2003). https://doi.org/10.1146/annurev.matsci.33.041202.103842
  119. I.-Y. Kim, M. Biswas, J. Hong, K. J. Yoon, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-J. Je, and H.-W. Lee, "Effect of Internal and External Constraints on Sintering Behavior of Thin Film Electrolytes for Solid Oxide Fuel Cells (SOFCs)," Ceram. Int., 40 [8] 13131-38 (2014). https://doi.org/10.1016/j.ceramint.2014.05.016
  120. R. Tomov, M. Krauz, J. Jewulski, S. Hopkins, J. Kluczowski, D. Glowacka, and B. A. Glowacki, "Direct Ceramic Inkjet Printing of Yttria-Stabilized Zirconia Electrolyte Layers for Anode-Supported Solid Oxide Fuel Cells," J. Power Sources, 195 [21] 7160-67 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.044
  121. K. Miller, F. Lange, and D. B. Marshall, "The Instability of Polycrystalline Thin Films: Experiment and Theory," J. Mater. Res., 5 [1] 151-60 (1990). https://doi.org/10.1557/JMR.1990.0151
  122. E.-O. Oh, Thin Film Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD) Route for Intermediate Temperature Operation, Ph.D. Thesis, Inha University, Incheon, 2012.
  123. X. Xu, C. Xia, S. Huang, and D. Peng, "YSZ Thin Films Deposited by Spin-Coating for IT-SOFCs," Ceram. Int., 31 [8] 1061-64 (2005). https://doi.org/10.1016/j.ceramint.2004.11.005
  124. Y.-Y. Chen and W.-C. J. Wei, "Processing and Characterization of Ultra-Thin Yttria-Stabilized Zirconia (YSZ) Electrolytic Films for SOFC," Solid State Ionics, 177 [3-4] 351-57 (2006). https://doi.org/10.1016/j.ssi.2005.10.010
  125. D. Perednis and L. J. Gauckler, "Solid Oxide Fuel Cells with Electrolytes Prepared via Spray Pyrolysis," Solid State Ionics, 166 [3-4] 229-39 (2004). https://doi.org/10.1016/j.ssi.2003.11.011
  126. D. Young, A. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, and T. Reitz, "Ink-Jet Printing of Electrolyte and Anode Functional Layer for Solid Oxide Fuel Cells," J. Power Sources, 184 [1] 191-96 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.018
  127. W. Bao, G. Zhu, J. Gao, and G. Meng, "Dense YSZ Electrolyte Films Prepared by Modified Electrostatic Powder Coating," Solid State Ionics, 176 [7-8] 669-74 (2005). https://doi.org/10.1016/j.ssi.2004.10.023

Cited by

  1. Protonic ceramic electrolysis cells for fuel production: a brief review vol.57, pp.5, 2020, https://doi.org/10.1007/s43207-020-00059-4
  2. Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells vol.7, pp.40, 2019, https://doi.org/10.1126/sciadv.abj8590
  3. 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00142-4