DOI QR코드

DOI QR Code

Compositional Effect of SiO2-B2O3-BaO Ternary Glass System for Reversible Oxide Cell Sealing Glass

  • Lee, Han Sol (Institute for Rare Metals & Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Sung Hyun (Institute for Rare Metals & Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Sun Dong (Energy Materials Laboratory, Korea Energy Research Institute) ;
  • Woo, Sang Kuk (Energy Materials Laboratory, Korea Energy Research Institute) ;
  • Chung, Woon Jin (Institute for Rare Metals & Division of Advanced Materials Engineering, Kongju National University)
  • Received : 2019.01.15
  • Accepted : 2019.02.25
  • Published : 2019.03.31

Abstract

Thermal properties of a SiO2-B2O3-BaO ternary glass system depending on compositional change of BaO have been examined to find a proper sealing material for reversible oxide cells. Glass transition temperature and thermal expansion coefficients increased simultaneously up to 55 mol% of BaO content. The structural role of BaO with regard to the thermal properties has been discussed on the basis of Raman spectroscopy results. Flowability of the glass at sealing temperature has been examined with packed glass powders of 12 mm diameter along with a high temperature optical microscope. The practical sealing property of the glass was also examined with YSZ coated with NiO-yittria stabilized zirconia (NiO-YSZ) and it showed good adhesion without noticeable reaction with NiO-YSZ layer.

Keywords

References

  1. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. M. Ni, M. K. H. Leung, and D. Y. C. Leung, "Technological Development of Hydrogen Production by Solid Oxide Electrolyzer Cell (SOEC)," Int. J. Hydrogen Energy, 33 [9] 2337-54 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.048
  3. O. A. Marina, L. R. Pederson, C. Williams, G. W. Coffey, K. D. Meinhardt, C. D. Ngyuyen, and E. C. Thomsen, "Electrode Performance in Reversible Solid Oxide Fuel Cells," J. Electrochem. Soc., 154 [5] B452-59 (2007). https://doi.org/10.1149/1.2710209
  4. V. N. Nguyen, Q. Fang, U. Packbier, and L. Blum, "Long-Term Tests of a Julich Planar Short Stack with Reversible Solid Oxide Cells in Both Fuel Cell and Electrolysis Modes," Int. J. Hydrogen Energy, 38 [11] 4281-90 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.192
  5. J. C. Ruiz-Morales, D. Marrero-Lopez, J. Canales-Vazquez, and J. T. S. Irvine, "Symmetric and Reversible Solid Oxide Fuel Cells," RSC Adv., 1 [8] 1403-14 (2011). https://doi.org/10.1039/c1ra00284h
  6. M. J. Da Silva, J. F. Bartolome, A. H. D. Aza, and S. Mello-Castanho, "Glass Ceramic Sealants Belonging to BAS (BaO-$Al_2O_3$-$SiO_2$) Ternary System Modified with $B_2O_3$ Addition: A Different Approach to Access the SOFC Seal Issue," J. Eur. Ceram. Soc., 36 [3] 631-44 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.005
  7. S. Ghosh, A. D. Sharma, P. Kundu, S. Mahanty, and R. N. Basu, "Development and Characterizations of BaO-CaO-$Al_2O_3$-$SiO_2$ Glass-Ceramic Sealants for Intermediate Temperature Solid Oxide Fuel Cell Application," J. Non-Cryst. Solids, 354 [34] 4081-88 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.036
  8. C. Holbrook, S. Chakraborty, S. Ravindren, P. Boolchand, J. T. Goldstein, and C. E. Stutz, "Topology and Glass Structure Evolution in $(BaO)_x((B_2O_3)_{32}(SiO_2)_{68})_{100-x}$ Ternary Evidence of Rigid, Intermediate, and Flexible Phases," J. Chem. Phys., 140 [14] 144506 (2014). https://doi.org/10.1063/1.4869348
  9. V. V. Golubkov, V. L. Stolyarova, Z. G. Tyurnina, and N. G. Tyurnina, "On the Structure of Glasses in the BaO-$B_2O_3$-$SiO_2$ System," Glass Phys. Chem., 36 [5] 554-60 (2010). https://doi.org/10.1134/S1087659610050020
  10. E. W. Youngman, S. T. Haubrich, J. W. Zwanziger, M. T. Janicke, and B. F. Chmelka, "Short- and Intermediate-Range Structural Ordering In Glassy Boron Oxide," Science, 269 [5229] 1416-20 (1995). https://doi.org/10.1126/science.269.5229.1416
  11. G. Ferlat, T. Charpentier, A. P. Seitsonen, A. Takada, M. Lazzeri, L. Cormier, G. Calas, and F. Mauri. "Boroxol Rings In Liquid and Vitreous $B_2O_3$ from First Principles," Phys. Rev. Lett., 101 [6] 065504 (2008). https://doi.org/10.1103/PhysRevLett.101.065504
  12. A. R. Betzen, B. L. Kudlacek, S. Kapoor, J. R. Berryman, N. P. Lower, H. A. Feller, M. affatigato, and S. A. Feller, "Physical Proeprties of Barium Borosilicate Glasses Related to Atomic Structure," Phys. Chem. Glasses, 44 [3] 207 (2003).
  13. S. E. Lin, T. R. Cheng, and W. C. Wei, "BaO-$B_2O_3$-$SiO_2$-$Al_2O_3$ Sealing Glass for Intermediate Temperature Solid Oxide Fuel Cell," J. Non-Cryst. Solids, 358 [2] 174-81 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.09.013
  14. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies; pp. 455−80, CRC press, Boca Raton, FL, 2007.
  15. T. Furukawa and W. B. Whtte, "Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure," J. Mater. Sci., 16 [10] 2689-700 (1981). https://doi.org/10.1007/BF02402831
  16. P. McMillan, "Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy," Am. Mineral., 69 [7-8] 622-44 (1984).
  17. J. E. Stanworth, "The Structure of Glass," J. Soc. Glass Technol., 30 54-66 (1946).