DOI QR코드

DOI QR Code

Fabrication of Mullite-Bonded Porous SiC Using Ti3AlC2 MAX Phase

  • Septiadi, Arifin (School of Materials Science and Engineering, Yeungnam University) ;
  • Yoon, Dang-Hyok (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2019.02.23
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

This study assessed the feasibility of a Ti3AlC2 MAX phase as an Al-source for the formation of a mullite bond in the fabrication of porous SiC tubes with high strength. The as-received Ti3AlC2 was partially oxidized at 1200℃ for 30 min before using to minimize the abrupt volume expansion caused by oxidation during sintering. Thermal treatment at 1100-1400℃ for 3 h in air led to the formation of Al2O3 by the decomposition of Ti3AlC2, which reacted further with oxidation-derived SiO2 on the SiC surface to form a mullite phase. The fabricated porous SiC tubes with a relative density of 48 - 62 % exhibited mechanical strengths of 80 - 200 MPa, which were much higher than those with the Al2O3 filler material. The high mechanical strength of the Ti3AlC2-added porous SiC was explained by the rigid mullite neck formation along with the retained Ti3AlC2 with good mechanical properties.

Keywords

References

  1. F. Rodriguez-Rojas, A. L. Ortiz, F. Guiberteau, and M. Nygren, "Anomalous Oxidation Behaviour of Pressureless Liquid-Phase-Sintered SiC," J. Eur. Ceram. Soc., 31 [13] 2393-400 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.015
  2. E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, F. Guiberteau, M. Nygren, and A. L. Ortiz, "Sliding-Wear Resistance of Ultrafine-Grained SiC Densified by Spark Plasma Sintering with $3Y_2O_3$+$5Al_2O_3$ or $Y_3Al_5O_{12}$ Additives," Scr. Mater., 69 [8] 598-601 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.007
  3. Y. K. Seo, Y. W. Kim, T. Nishimura, and W. S. Seo, "High-Temperature Strength of a Thermally Conductive Silicon Carbide Ceramic Sintered with Yttria and Scandia," J. Eur. Ceram. Soc., 36 [15] 3755-60 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.028
  4. X. Guo, X. Cai, L. Zhu, L. Zhang, and H. Yang, "Preparation and Properties of SiC Honeycomb Ceramics by Pressureless Sintering Technology," J. Adv. Ceram., 3 [1] 83-8 (2014). https://doi.org/10.1007/s40145-014-0097-x
  5. S. Ding, S. Zhu, Y. Zeng, and D. Jiang, "Effect of $Y_2O_3$ Addition on the Properties of Reaction-Bonded Porous SiC Ceramics," Ceram. Int., 32 [4] 461-66 (2006). https://doi.org/10.1016/j.ceramint.2005.03.024
  6. M. Lopez-Alvarez, I. Pereiro, J. Serra, P. Gonzalez, and A. de Carlos, "Porous Silicon Carbide Scaffolds with Patterned Surfaces Obtained from the Sea Rush Juncus Maritimus for Tissue Engineering Applications," Int. J. Appl. Ceram. Technol., 9 [3] 486-96 (2012). https://doi.org/10.1111/j.1744-7402.2011.02659.x
  7. J. H. She, Z.Y. Deng, J. Daniel-Doni, and T. Ohji, "Oxidation Bonding of Porous Silicon Carbide Ceramics," J. Mater. Sci., 37 [17] 3615-22 (2002). https://doi.org/10.1023/A:1016596805717
  8. A. Poowancum, K. Matsumaru, and K. Ishizaki, "Low-Temperature Glass Bonding for Development of Silicon Carbide/Zirconium Tungsten Oxide Porous Ceramics with near Zero Thermal Expansion Coefficient," J. Am. Ceram. Soc., 94 [5]1354-56 (2011). https://doi.org/10.1111/j.1551-2916.2011.04520.x
  9. S. C. Kim, Y. W. Kim, and I. H. Song, "Processing and Properties of Glass-Bonded Silicon Carbide Membrane Supports," J. Eur. Ceram. Soc., 37 [4] 1225-32 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.019
  10. C. Bai, X. Deng, J. Li, Y. Jing, and W. Jiang, "Preparation and Properties of Mullite-Bonded Porous SiC Ceramics Using Porous Alumina as Oxide," Mater. Charact., 90 81-7 (2014). https://doi.org/10.1016/j.matchar.2014.01.016
  11. S. Kitaoka, T. Matsudaira, D. Yokoe, T. Kato, and M. Takata, "Oxygen Permeation Mechanism in Polycrystalline Mullite at High Temperatures," J. Am. Ceram. Soc., 100 [7] 3217-26 (2017). https://doi.org/10.1111/jace.14834
  12. C. Sadik, I. E. El Amrani, and A. Albizane, "Processing and Characterization of Alumina-Mullite Ceramics," J. Asian Ceram. Soc., 2 [4] 310-16 (2014). https://doi.org/10.1016/j.jascer.2014.07.006
  13. S. Ding, S. Zhu, Y.-P. Zeng, and D. Jiang, "Fabrication of Mullite-Bonded Porous Silicon Carbide Ceramics by in situ Reaction Bonding," J. Eur. Ceram. Soc., 27 [4] 2095-102 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.003
  14. H. Schneider, R. X. Fischer, and J. Schreuer, "Mullite: Crystal Structure and Related Properties," J. Am. Ceram. Soc., 98 [10] 2948-67 (2015). https://doi.org/10.1111/jace.13817
  15. A. Noviyanto and D. H. Yoon, "Rare-Earth Oxide Additives for the Sintering of Silicon Carbide," Diamond Relat. Mater., 38 124-30 (2013). https://doi.org/10.1016/j.diamond.2013.07.003
  16. M. M. S. Wahsh, H. E. S. Sadek, S. A. El-Aleem, and H. H. M. Darweesh, "The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina-Mullite Ceramic Composites," Adv. Mater., 4 [4] 80-4 (2015). https://doi.org/10.11648/j.am.20150404.12
  17. A. Dey, N. Kayal, and O. Chakrabarti, "Preparation of Mullite Bonded Porous SiC Ceramics by an Infiltration Method," J. Mater. Sci., 46 [16] 5432-38 (2011). https://doi.org/10.1007/s10853-011-5484-x
  18. C. Bai, Y. Li, Z. Liu, P. Liu, X. Deng, J. Li, and J. Yang, "Fabrication and Properties of Mullite-Bonded Porous SiC Membrane Supports Using Bauxite as Aluminum Source," Ceram. Int., 41 [3] 4391-400 (2015). https://doi.org/10.1016/j.ceramint.2014.11.129
  19. B. V. M. Kumar, J. H. Eom, Y. W. Kim, I. S. Han, and S. K. Woo, "Effect of Aluminum Source on Flexural Strength of Mullite-Bonded Porous Silicon Carbide Ceramics," J. Ceram. Soc. Jpn, 118 [1373] 13-8 (2010). https://doi.org/10.2109/jcersj2.118.13
  20. Z. Y. Deng, J. She, Y. Inagaki, J. F. Yang, T. Ohji, and Y. Tanaka, "Reinforcement by Crack-Tip Blunting in Porous Ceramics," J. Eur. Ceram. Soc., 24 [7] 2055-59 (2004). https://doi.org/10.1016/S0955-2219(03)00365-0
  21. X. Li, L. Zheng, Y. Qian, J. Xu, and M. Li, "Effects of High Temperature Oxidation on Mechanical Properties of $Ti_3AlC_2$," J. Mater. Sci. Technol., 33 [6] 596-602 (2017). https://doi.org/10.1016/j.jmst.2016.05.004
  22. A. Septiadi, P. Fitriani, A. S. Sharma, and D. H. Yoon, "Low Pressure Joining of $SiC_f$/SiC Composites Using $Ti_3AlC_2$ or $Ti_3SiC_2$ MAX Phase Tape," J. Korean Ceram Soc., 54 [4] 340-48 (2017). https://doi.org/10.4191/kcers.2017.54.4.08
  23. A. Zhou, C. Wang, and Y. Hunag, "Synthesis and Mechanical Properties of $Ti_3AlC_2$ by Spark Plasma Sintering," J. Mater. Sci., 38 [14] 3111-15 (2003). https://doi.org/10.1023/A:1024777213910
  24. Japanese Industrial Standards Committee, Sintered Metal Bearing - Determination of Radial Crushing Strength, JIS Z 2507, Japanese Standard Association, Tokyo, Japan 2000.
  25. X. H. Wang and Y. C. Zhou, "Oxidation Behavior of $Ti_3AlC_2$ Powders in Flowing Air," J. Mater. Chem., 12 [9] 2781-85 (2002). https://doi.org/10.1039/b203644d
  26. M. Shulpekov, O. K. Lepakova, V. G. Salamatov, and N. I. Afannasyev, "Advanced Structural Materials Based on the Ti-Cr-Al-C System"; pp. 1-5 in Proceedings of the Journal of Physics: Conference Series 1115-6th International Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, 2018.
  27. I. M. Low, Z. Oo, and B. H. O'Connor, "Effect of Atmospheres on the Thermal Stability of Aluminium Titanate," Phys. B, 385-386 502-4 (2006). https://doi.org/10.1016/j.physb.2006.05.256
  28. H. Schneider, J. Schreuer, and B. Hildmann, "Structure and Properties of Mullite-A Review," J. Eur. Ceram. Soc., 28 [2] 329-44 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  29. X. H. Wang and Y. C. Zhou, "Stability and Selective Oxidation of Aluminum in Nano-Laminate $Ti_3AlC_2$ upon Heating in Argon," Chem. Mater., 15 [19] 3716-20 (2003). https://doi.org/10.1021/cm030022v
  30. G. M. Song, Y. T. Pei, W. G. Sloof, S. B. Li, J. Th. M. De Hosson, and S. van der Zwaag, "Early Stage of Oxidation of $Ti_3AlC_2$ Ceramics," Mater. Chem. Phys., 112 762-68 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.038
  31. J. H. Park, J. H. Kim, W. S. Cho, K. S. Han, and K. T. Hwang, "Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology," J. Korean Ceram. Soc., 54 [2] 114-20 (2017). https://doi.org/10.4191/kcers.2017.54.2.06
  32. H. Katsuki, E. K. Choi, W. J. Lee, U. S. Kim, K. T. Hwang, and W. S. Cho, "Eco-Friendly Self-Cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water,"J. Korean Ceram. Soc., 55 [2] 153-59 (2018). https://doi.org/10.4191/kcers.2018.55.2.05
  33. Y. Zhou, M. Fukushima, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto, and K. Sato, "Preparation and Characterization of Tubular Porous Silicon Carbode Membrane Supports," J. Membr. Sci., 369 [1-2] 112-18 (2011). https://doi.org/10.1016/j.memsci.2010.11.055