DOI QR코드

DOI QR Code

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements

  • Lim, Jiwon (Department of Materials Science and Engineering, Chonnam National University) ;
  • Guk, Jae-Geun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Singh, Bhupendra (CSIR-Advanced Materials and Process Research Institute (AMPRI)) ;
  • Hwang, Yun-Chan (Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Song, Sun-Ju (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Ho-Sung (Department of Materials Science and Engineering, Chonnam National University)
  • 투고 : 2019.07.02
  • 심사 : 2019.07.12
  • 발행 : 2019.07.31

초록

In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.

키워드

참고문헌

  1. M. Rinastiti, "Biomaterials in Dentistry," pp. 183-205 in Biomaterials and Medical Devices, Eds. by F. Mahyudin and H. Hermawan, Springer International Publishing Switzerland 2016.
  2. N. Ewoldsen and R. S. Demke, "A Review of Orthodontic Cements and Adhesives," Am. J. Orthod. Dentofacial Orthop., 120 [1] 45-8 (2001). https://doi.org/10.1067/mod.2001.117207
  3. J. Paul, "Dental Cements- A Review to Proper Selection," Int. J. Curr. Microbiol. App. Sci., 4 [2] 659-69 (2015).
  4. W. L. Kydd, J. I. Nicholls, G. Harrington, and M. Freeman, "Marginal Leakage of Cast Gold Crowns Luted with Zinc Phosphate Cement: An in vivo Study," J. Prosthet. Dent., 75 [1] 9-13 (1996). https://doi.org/10.1016/S0022-3913(96)90411-4
  5. T. F. Watson, A. R. Atmeh, S. Sajini, R. J. Cook, and F. Festy, "Present and Future of Glass-Ionomers and Calcium-Silicate Cements as Bioactive Materials in Dentistry: Biophotonics-based Interfacial Analyses in Health and Disease," Dent. Mater., 30 [1] 50-61 (2014). https://doi.org/10.1016/j.dental.2013.08.202
  6. L. Grech, B. Mallia, and J. Camilleri, "Investigation of the Physical Properties of Tricalcium Silicate Cement-based Root-End Filling Materials," Dent. Mater., 29 [2] e20-8 (2013). https://doi.org/10.1016/j.dental.2012.11.007
  7. M. S. Baig and G. J. P. Fleming, "Conventional Glass-Ionomer Materials: A Review of the Developments in Glass Powder, Polyacid Liquid and the Strategies of Reinforcement," J. Dent., 43 [8] 897-912 (2015). https://doi.org/10.1016/j.jdent.2015.04.004
  8. J. M. Meyer, M. A. Cattani-Lorente, and V. Dupuis, "Compomers: Between Glass-Ionomer Cements and Composites," Biomaterials, 19 [6] 529-39 (1998). https://doi.org/10.1016/S0142-9612(97)00133-6
  9. I. Radovic, F. Monticelli, C. Goracci, Z. R. Vulicevic, and M. Ferrari, "Self-Adhesive Resin Cements: A Literature Review," J. Adhes. Dent., 10 [4] 251-58 (2008).
  10. T. Komabayashi, Q. Zhu, R. Eberhart, and Y. Imai, "Current Status of Direct Pulp-Capping Materials for Permanent Teeth," Dent. Mater. J., 35 [1] 1-12 (2016). https://doi.org/10.4012/dmj.2015-013
  11. M. Karapinar-Kazandag, B. Basrani, V. T.-K. Yamagishi, A. Azarpazhooh, and S. "Friedman, Fracture Resistance of Simulated Immature Tooth Roots Reinforced with MTA or Restorative Materials," Dent. Traumatol., 32 [2] 146-52 (2016). https://doi.org/10.1111/edt.12230
  12. J. Camilleri, Mineral Trioxide Aggregate in Dentistry: From preparation to Application; Springer-Verlag Berlin Heidelberg, 2014.
  13. M. Torabinejad and D. J. White, "Tooth Filling Material and Method of Use"; U.S. Patent 5411547, 1993.
  14. H. W. Roberts, J. M. Toth, D. W. Berzins, and D. G. Charlton, "Mineral Trioxide Aggregate Material Use in Endodontic Treatment: A Review of the Literature," Dent. Mater., 24 [2] 149-64 (2008). https://doi.org/10.1016/j.dental.2007.04.007
  15. M. Parirokh and M. Torabinejad, "Mineral Trioxide Aggregate: A Comprehensive Literature Review-Part I: Chemical, Physical, and Antibacterial Properties," J. Endod., 36 [1] 16-27 (2010). https://doi.org/10.1016/j.joen.2009.09.006
  16. O. Malkondu, M. K. Kazandag, and E. Kazazoglu, "A review on Biodentine, a Contemporary Dentine Replacement and Repair Material," BioMed Res. Int., 2014 160951 (2014). https://doi.org/10.1155/2014/160951
  17. T. F. Watson, A. R. Atmeh, S. Sajini, R. J. Cook, and F. Festy, "Present and Future of Glass-Ionomers and Calcium-Silicate Cements as Bioactive Materials in Dentistry: Biophotonics-based Interfacial Analyses in Health and Desease," Dent. Mater., 30 [1] 50-61 (2014). https://doi.org/10.1016/j.dental.2013.08.202
  18. M. Parirokh and M. Torabinejad, "Calcium Silicate-based Cements," pp. 281-332 in Mineral Trioxide Aggregate: Properties and Clinical Applications, Ed. by M. Torabinejad, John Wiley & Sons, Inc., Hoboken, USA, 2014.
  19. C. M. Bramante, A. C. C. O. Demarchi, I. G. de Moraes. N. Bernadineli, R. B. Garcia, L. S. W. Spangberg, and M. A. H. Duarte, "Presence of Arsenic in Different Types of MTA and White and Gray Portland Cement," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 106 [6] 909-13 (2008). https://doi.org/10.1016/j.tripleo.2008.07.018
  20. C. M. Primus, "Comments on Testing for the Presence of Arsenic in MTA and Portland Cement," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 108 [6] 479-80 (2009). https://doi.org/10.1016/j.tripleo.2009.04.041
  21. G. De-Deus, M. C. B. de Souza, R. A. S. Fidel, S. R. Fidel, R. C. de Campos, and A. S. Luna, "Negligible Expression of Arsenic in Some Commercially Available Brands of Portland Cement and Mineral Trioxide Aggregate," J. Endod., 35 [6] 887-90 (2009). https://doi.org/10.1016/j.joen.2009.03.003
  22. M. A. Marciano, M. A. H. Duarte, and J. Camilleri, "Calcium Silicate-based Sealers: Assessment of Physicochemical Properties, Porosity and Hydration," Dent. Mater., 32 [2] e30-40 (2016).
  23. A. D. Santos, E. B. Araujo, K. Yukimitu, J. C. Barbosa, and J. C. S. Moraes, "Setting Time and Thermal Expansion of Two Endodontic Cements," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 106 [3] 77-9 (2008).
  24. B. Hemasathya, C. M. B. Mony, and V. Prakash, "Recent Advances in Root End Filling Materials: A Review," Biomed. Pharmacol. J., 8 219-24 (2015).
  25. S. Asgary, S. Shahabi, T. Jafarzadeh, S. Amini, and S. Kheirieh, "The Properties of a New Endodontic Material," J. Endod., 34 [8] 990-93 (2008). https://doi.org/10.1016/j.joen.2008.05.006
  26. S. W. Chang, W. J. Bae, J. K. Yi, S. Lee, D. W. Lee, K. Y. Kum, and E. C. Kim, "Odontoblastic Differentiation, Inflammatory Response, and Angiogenic Potential of 4 Calcium Silicate-based Cements: Micromega MTA, Pro-Root MTA, RetroMTA, and Experimental Calcium Silicate Cement," J. Endod., 41 [9] 1524-29 (2015). https://doi.org/10.1016/j.joen.2015.04.018
  27. M. H. Huang, Y. F. Shen, T. T. Hsu, T. H. Huang, and M. Y. Shie, "Physical Characteristics, Antimicrobial and Odontogenesis Potentials of Calcium Silicate Cement Containing Hinokitiol," Mater. Sci. Eng., C, 65 1-8 (2016). https://doi.org/10.1016/j.msec.2016.04.016
  28. Y. C. Hwang, D. H. Kim, I. N. Hwang, S. J. Song, Y. J. Park, J. T. Koh, H. H. Son, and W. M. Oh, "Chemical Constitution, Physical Properties, and Biocompatibility of Experimentally Manufactured Portland Cement," J. Endod., 37 [1] 58-62 (2011). https://doi.org/10.1016/j.joen.2010.09.004
  29. K. P. Seong, S. Y. Jeon, B. Singh, J. H. Hwang, and S. J. Song, "Comparative Study of an Experimental Portland Cement and ProRoot MTA by Electrochemical Impedance Spectroscopy," Ceram. Int., 40 [1] 1741-46 (2014). https://doi.org/10.1016/j.ceramint.2013.07.073
  30. H. M. Setbon, J. Devaux, A. Iserentant, G. Leloup, and J. G. Lepince, "Influence of Composition on Setting Kinetics of New Injectable and/or Fast Setting Tricalcium Silicate Cements," Dent. Mater., 30 [12] 1291-303 (2014). https://doi.org/10.1016/j.dental.2014.09.005
  31. P. Gu, P. Xie, J. J. Beaudoin, and R. Brousseau, "A.C. Impedance Spectroscopy (I): A New Equivalent Circuit Model for Hydrated Portland Cement Paste," Cem. Concr. Res., 22 [5] 833-40 (1992). https://doi.org/10.1016/0008-8846(92)90107-7
  32. P. Xie, P. Gu, Z. Xu, and J. J. Beaudoin, "A Rationalized A.C. Impedance Model for Microstructural Characterization of Hydrating Cement Systems," Cem. Concr. Res., 23 [2] 359-67 (1993). https://doi.org/10.1016/0008-8846(93)90101-E
  33. C. Villat, V. X. Tran, N. Pradelle-Plasse, P. Ponthiaux, F. Wenger, B. Grosgogeat, and P. Colon, "Impedance Methodology: A New Way to Characterize the Setting Reaction of Dental Cements," Dent. Mater., 26 [12] 1127-32 (2010). https://doi.org/10.1016/j.dental.2010.07.013
  34. A. Mogus-Milankovic, K. Sklepic, M. Calogovic, M. Marcius, K. Prskalo, B. Jankovic, and Z. Tarle, "Impedance as a Measure of Setting Reaction in Glass Ionomer Cements," J. Non-Cryst. Solids, 389 93-103 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.02.012
  35. A. Santic, M. Calogovic, L. Pavic, J. Gladic, Z. Vucic, D. Lovric, K. Prskalo, B. Jankovic, Z. Tarle, and A. Mogus-Milankovic, "New Insights into the Setting Processes of Glass Ionomer Cements from Analysis of Dielectric Properties," J. Am. Ceram. Soc., 98 [12] 3869-76 (2015). https://doi.org/10.1111/jace.13830
  36. A. Gaki, R. Chrysafi, and G. Kakali, "Chemical Synthesis of Hydraulic Calcium Aluminate Compounds Using the Pechini Technique," J. Eur. Ceram. Soc., 27 [2-3] 1781-84 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.002
  37. A. N. Christensen, N. V. Y. Scarlett, I. C. Madsen, T. R. Jensen, and J. C. Hanson, "Real Time Study of Cement and Clinker Phases Hydration," Dalton Trans., 2003 [8] 1529-36 (2003). https://doi.org/10.1039/b301095n
  38. A. P. Kirchheim, V. Fernandez-Altable, P. J. M. Monteiro, D. C. C. D. Molin, and I. Casanova, "Analysis of Cubic and Orthorhombic C3A Hydration in Presence of Gypsum and Lime," J. Mater. Sci., 44 [8] 2038-45 (2009). https://doi.org/10.1007/s10853-009-3292-3
  39. I. Sharpley, The Effect of Hydration on the Microstructural Properties of Individual Phases of Ordinary Portland Cement; Master Dissertation, University of London, 2015.
  40. R. T. Coverdale, B. J. Christensen, H. M. Jennings, T. O. Mason, D. P. Bentz, and E. J. Garboczi, "Interpretation of Impedance Spectroscopy of Cement Paste via Computer Modeling," J. Mater. Sci., 30 [3] 712-19 (1995). https://doi.org/10.1007/BF00356331
  41. E. Breval, "$C_3A$ Hydration," Cem. Concr. Res., 6 [1] 129-37 (1976). https://doi.org/10.1016/0008-8846(76)90057-0
  42. E. Pustovgar, R. P. Sangodkar, A. S. Andreev, M. Palacios, B. F. Chmelka, R. J. Flatt, and J. B. d'Espinose de Lacaillerie, "Understanding Silicate Hydration from Quantitative Analyses of Hydrating Tricalcium Silicates," Nat. Commun., 7 10952 (2016). https://doi.org/10.1038/ncomms10952
  43. S. Goni, F. Puertas, M. S. Hernandez, M. Palacios, A. Guerrero, J. S. Dolado, B. Zanga, and F. Baroni, "Quantitative Study of Hydration of $C_3S$ and $C_2S$ by Thermal Analysis, Evolution and Composition of C-S-H Gels Formed," J. Therm. Anal. Calorim., 102 [3] 965-73 (2010). https://doi.org/10.1007/s10973-010-0816-7
  44. N. L. Thomas and D. D. Double, "The Hydration of Portland Cement, $C_3S$ and $C_2S$ in the Presence of a Calcium Complexing Admixture (EDTA)," Cem. Concr. Res., 13 [3] 391-400 (1983). https://doi.org/10.1016/0008-8846(83)90039-X
  45. L. Valentini, M. C. Dalconi, M. Favero, G. Artioli, and G. Ferrari, "In-Situ XRD Measurement and Quantitative Analysis of Hydrating Cement: Implications for Sulfate Incorporation in C-S-H," J. Am. Ceram. Soc., 98 [4] 1259-64 (2015). https://doi.org/10.1111/jace.13401
  46. G. Kakali, S. Tsivilis, E. Aggeli, and M. Bati, "Hydration Products of $C_3A$, $C_3S$ and Portland Cement in the Presence of $CaCO_3$," Cem. Concr. Res., 30 [7] 1073-77 (2000). https://doi.org/10.1016/S0008-8846(00)00292-1
  47. J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas, "Mechanisms of Cement Hydration," Cem. Concr. Res., 41 [12] 1208-23 (2011). https://doi.org/10.1016/j.cemconres.2010.09.011
  48. H. F. W. Taylor, Cement Chemistry; Ch. 1, 2nd Ed., Thomas Telford, London, 1997.
  49. S. Garrault and A. Nonat, "Hydrated Layer Formation on Tricalcium and Dicalcium Silicate Surfaces: Experimental Study and Numerical Simulations," Langmuir, 17 [26] 8131-38 (2001). https://doi.org/10.1021/la011201z
  50. A. Bentur, "Effect of Gypsum on the Hydration and Strength of $C_3S$ Pastes," J. Am. Ceram. Soc., 59 [5-6] 210-13 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10935.x
  51. P.-C. Aitcin, Portland Cement Hydration, pp. 146-205 in Binders for Durable and Sustainable Concrete, CRC Press, New York, 2007.
  52. Y. Zhang and X. Zhang, "Research on Effect of Limestone and Gypsum on $C_3A$, $C_3S$ and PC Clinker System," Constr. Building Mater., 22 [8] 1634-42 (2008). https://doi.org/10.1016/j.conbuildmat.2007.06.013
  53. M. Y. Hassaan, “Effect of Gypsum on the Strength Development of Portland Cement by Mossbauer Spectrometry,” Hyperfine Interact., 42 [1-4] 1199-202 (1988).

피인용 문헌

  1. 난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향 vol.26, pp.6, 2019, https://doi.org/10.4150/kpmi.2019.26.6.493