DOI QR코드

DOI QR Code

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet (School of Materials Science and Engineering, Yeungnam University) ;
  • Yoon, Jang Yuel (School of Materials Science and Engineering, Yeungnam University) ;
  • Thakre, Atul (School of Materials Science and Engineering, Yeungnam University) ;
  • Peddigari, Mahesh (Functional Ceramics Group, Korea Institute of Material Science) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Ryu, Jungho (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2019.07.04
  • Accepted : 2019.07.12
  • Published : 2019.07.31

Abstract

In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

Keywords

References

  1. Z. Lin, Y. Chen, Z. Liu, G. Wang, D. Remiens, and X. Dong, "Large Energy Storage Density, Low Energy Loss and Highly Stable $(Pb_{0.97}La_{0.02})(Zr_{0.66}Sn_{0.23}Ti_{0.11})O_3$ Antiferroelectric Thin-Film Capacitors," J. Eur. Ceram. Soc., 38 [9] 3177-81 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.004
  2. X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application," J. Adv. Dielectr., 03 [01] 1330001 (2013). https://doi.org/10.1142/S2010135X13300016
  3. H. Fan, B. Peng, and Q. Zhang, "Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics," Trans. Electr. Electron. Mater., 16 [1] 1-4 (2015). https://doi.org/10.4313/TEEM.2015.16.1.1
  4. M. Peddigari, H. Palneedi, G.-T. Hwang, K. W. Lim, G.-Y. Kim, D.-Y. Jeong, and J. Ryu, "Boosting the Recoverable Energy Density of Lead-free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior," ACS Appl. Mater. Interfaces, 10 [24] 20720-27 (2018). https://doi.org/10.1021/acsami.8b05347
  5. Z. Liu, X. Dong, Y. Liu, F. Cao, and G. Wang, "Electric Field Tunable Thermal Stability of Energy Storage Properties of PLZST Antiferroelectric Ceramics," J. Am. Ceram. Soc., 100 [6] 2382-86 (2017). https://doi.org/10.1111/jace.14867
  6. Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, "High-Temperature Dielectric Materials for Electrical Energy Storage," Annu. Rev. Mater. Res., 48 219-43 (2018). https://doi.org/10.1146/annurev-matsci-070317-124435
  7. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, and H. Liu, "Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances," Adv. Mater., 29 [20] 1601727 (2017). https://doi.org/10.1002/adma.201601727
  8. C.-K. Park, S. Lee, J.-H. Lim, J. Ryu, D. Choi, and D.-Y. Jeong, "Nano-Size Grains and High Density of 65PMN-35PT Thick Film for High Energy Storage Capacitor," Ceram. Int., 44 [16] 20111-14 (2018). https://doi.org/10.1016/j.ceramint.2018.07.303
  9. H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, and J. Ryu, "High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook," Adv. Funct. Mater., 28 [42] 1803665 (2018). https://doi.org/10.1002/adfm.201803665
  10. B. Lu, P. Li, Z. Tang, Y. Yao, X. Gao, W. Kleemann, and S.G. Lu, "Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics," Sci. Rep., 7 1-8 (2017). https://doi.org/10.1038/s41598-016-0028-x
  11. G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  12. D. Lin, Q. Zheng, K. W. Kwok, C. Xu, and C. Yang, "Dielectric and Piezoelectric Properties of $MnO_2$-doped $K_{0.5}Na_{0.5}Nb_{0.92}Sb_{0.08}O_3$ Lead-free Ceramics," J. Mater. Sci. Mater. Electron., 21 [7] 649-55 (2010). https://doi.org/10.1007/s10854-009-9971-7
  13. D. Lin, K. W. Kwok, and H. L. W. Chan, "Piezoelectric and Ferroelectric Properties of $K_xNa_{1-x}NbO_3$ Lead-free Ceramics with $MnO_2$ and CuO Doping," J. Alloys Compd., 461 [1-2] 273-78 (2008). https://doi.org/10.1016/j.jallcom.2007.06.128
  14. W. Yang, D. Jin, T. Wang, and J. Cheng, "Effect of Oxide Dopants on the Structure and Electrical Properties of $(Na_{0.5}K_{0.5})NbO_3-LiSbO_3$ Lead-free Piezoelectric Ceramics," Phys. B, 405 [7] 1918-21 (2010). https://doi.org/10.1016/j.physb.2010.01.074
  15. X. P. Jiang, Y. Chen, K. H. Lam, S. H. Choy, and J. Wang, "Effects of MnO Doping on Properties of $0.97K_{0.5}Na_{0.5}NbO_3-0.03(Bi_{0.5}K_{0.5})TiO_3$ Piezoelectric Ceramics," J. Alloys Compd., 506 [1] 323-26 (2010). https://doi.org/10.1016/j.jallcom.2010.06.200
  16. J.-G. Hwang, K.-S. Oh, T.-J. Chung, T.-H. Kim, and Y.-K. Paek, "Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper," J. Korean Ceram. Soc., 56 [1] 104-10 (2019). https://doi.org/10.4191/kcers.2019.56.1.05
  17. S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim, and K. W. Lee, "Low-Temperature Sintering of $MnO_2$-doped PZTPZN Piezoelectric Ceramics," J. Electroceramics., 18 [3-4] 311-15 (2007). https://doi.org/10.1007/s10832-007-9174-7
  18. V. Dimza, A. I. Popov, L. Lace, M. Kundzins, K. Kundzins, M. Antonova, and M. Livins, "Effects of Mn Doping on Dielectric Properties of Ferroelectric Relaxor PLZT Ceramics," Curr. Appl. Phys., 17 [2] 169-73 (2017). https://doi.org/10.1016/j.cap.2016.11.010
  19. Z. Du, C. Zhao, H.-C. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, and J. Fang, "Effect of $MnCO_3$ on the Electrical Properties of PZT-based Piezoceramics Sintered at Low Temperature," J. Alloys Compd., 801 27-32 (2019). https://doi.org/10.1016/j.jallcom.2019.06.059
  20. H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Thickness- Dependent Properties of Undoped and Mn-doped (001) PMN-29PT $[Pb(Mg_{1/3}Nb_{2/3})O_3-29PbTiO_3]$ Single Crystals," J. Korean Ceram. Soc., 55 [3] 290-98 (2018). https://doi.org/10.4191/kcers.2018.55.3.07
  21. H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN- 29PT $[71Pb(Mg_{1/3}Nb_{2/3})O_3-29PbTiO_3]$ Single Crystals and Polycrystalline Ceramics," J. Korean Ceram. Soc., 55 [2] 166-73 (2018). https://doi.org/10.4191/kcers.2018.55.2.04
  22. H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-modified PMNPZT $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$ Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 150-57 (2017). https://doi.org/10.4191/kcers.2017.54.2.03
  23. Y. Liu, X. Hao, and S. An, "Significant Enhancement of Energy-Storage Performance of $(Pb_{0.91}La_{0.09})(Zr_{0.65}Ti_{0.35})O_3$ Relaxor Ferroelectric Thin Films by Mn Doping," J. Appl. Phys., 114 [17] 174102 (2013). https://doi.org/10.1063/1.4829029
  24. Q. Du, Y. Tang, X. Huang, F. Wang, X. Zhao, X. Zhuang, W. Shi, J. Zhao, F. Liu, and H. Luo, "Structures and Pyroelectric Properties for [111]-Oriented Mn-doped Rhombohedral 0.36PIN-0.36PMN-0.28PT Crystal," J. Am. Ceram. Soc., Accepted (2019). doi:https://doi.org/10.1111/jace.16600
  25. U. Prah, T. Rojac, M. Wencka, M. Dragomir, A. Bradesko, A. Bencan, R. Sherbondy, G. Brennecka, Z. Kutnjak, B. Malic, and H. Ursic, "Improving the Multicaloric Properties of $Pb(Fe_{0.5}Nb_{0.5})O_3$ by Controlling the Sintering Conditions and Doping with Manganese," J. Eur. Ceram. Soc., 39 [14] 4122-30 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.062
  26. H. Qiao, C. He, F. Zhuo, Z. Wang, X. Li, Y. Liu, and X. Long, "Modulation of Electrocaloric Effect and Nanodomain Structure in Mn-doped $Pb(In_{0.5}Nb_{0.5})O_3-PbTiO_3$ Ceramics," Ceram. Int., 44 [16] 20417-26 (2018). https://doi.org/10.1016/j.ceramint.2018.08.035
  27. J. Kim, J.-H. Ha, J. Lee, I.-H. Song, J. Kim, J.-H. Ha, J. Lee, and I.-H. Song, "The Effect of $MnO_2$ Content on the Permeability and Electrical Resistance of Porous Alumina-based Ceramics," J. Korean Ceram. Soc., 54 [4] 331-39 (2017). https://doi.org/10.4191/kcers.2017.54.4.07
  28. A. Kumar, S. H. Kim, M. Peddigari, D.-H. Jeong, G.-T. Hwang, and J. Ryu, "High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of $(Pb_{0.89}La_{0.11})-(Zr_{0.70}Ti_{0.30})_{0.9725}O_3$ Relaxor Ferroelectric Ceramics," Electron. Mater. Lett., 15 [3] 323-30 (2019). https://doi.org/10.1007/s13391-019-00124-z
  29. D. Damjanovic, "Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics," Rep. Prog. Phys., 61 [9] 1267-324 (1998). https://doi.org/10.1088/0034-4885/61/9/002
  30. A. Kumar, K. C. J. Raju, and A. R. James, "Diffuse Phase Transition in Mechanically Activated $(Pb_{1-x}La_x)(Zr_{0.60}Ti_{0.40})O_3$ Electro-Ceramics," J. Mater. Sci. Mater. Electron., 28 [18] 13928-36 (2017). https://doi.org/10.1007/s10854-017-7242-6
  31. T. M. Kamel, F. X. N. M. Kools, and G. de With, "Poling of Soft Piezoceramic PZT," J. Eur. Ceram. Soc., 27 2471-79 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.08.014
  32. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, and H. Yan, "Unfolding Grain Size Effects in Barium Titanate Ferroelectric Ceramics," Sci. Rep., 5 9953 (2015). https://doi.org/10.1038/srep09953
  33. A. Kumar, S. Reddy Emani, V. V. Bhanu Prasad, K. C. James Raju, and A. R. James, "Microwave Sintering of Fine Grained PLZT 8/60/40 Ceramics Prepared via High Energy Mechanical Milling," J. Eur. Ceram. Soc., 36 [10] 2505-11 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.035
  34. A. Kumar, V. V. B. Prasad, K. C. J. Raju, and A. R. James, "Lanthanum Induced Diffuse Phase Transition in High Energy Mechanochemically Processed and Poled PLZT 8/60/40 Ceramics," J. Alloys Compd., 654 95-102 (2016). https://doi.org/10.1016/j.jallcom.2015.09.081
  35. L. Jin, F. Li, and S. Zhang, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures," J. Am. Ceram. Soc., 97 [1] 1-27 (2014). https://doi.org/10.1111/jace.12773
  36. A. Kumar, V. V. B. Prasad, K. C. J. Raju, R. Sarkar, P. Ghosal, and A. R. James, "Effect of Lanthanum Substitution on the Structural, Dielectric, Ferroelectric and Piezoelectric Properties of Mechanically Activated PZT Electroceramics," Def. Sci. J., 66 [4] 360-67 (2016). https://doi.org/10.14429/dsj.66.10209
  37. E. Chandrakala, J. Paul Praveen, A. Kumar, A. R. James, and D. Das, "Strain-Induced Structural Phase Transition and its Effect on Piezoelectric Properties of (BZT-BCT)-($CeO_2$) Ceramics," J. Am. Ceram. Soc., 99 [11] 3659-69 (2016). https://doi.org/10.1111/jace.14409
  38. M. Peddigari, H. Palneedi, G.-T. Hwang, and J. Ryu, "Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications," J. Korean Ceram. Soc., 56 [1] 1-23 (2019). https://doi.org/10.4191/kcers.2019.56.1.02
  39. H. J. Goldsmid, "Principles of Thermoelectric Devices," Br. J. Appl. Phys., 11 [6] 209-17 (1960). https://doi.org/10.1088/0508-3443/11/6/301
  40. D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, "Nano/Microscale Pyroelectric Energy Harvesting: Challenges and Opportunities," Int. J. Smart Nano Mater., 4 229-45 (2013). https://doi.org/10.1080/19475411.2013.872207
  41. A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, and J. Ryu, "Pyroelectric Energy Conversion and its Applications-Flexible Energy Harvesters and Sensors," Sensors, 19 [9] 2170 (2019).

Cited by

  1. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices vol.2, pp.8, 2019, https://doi.org/10.1039/c9na00809h
  2. Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics vol.13, pp.23, 2019, https://doi.org/10.3390/en13236457
  3. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives vol.121, pp.10, 2021, https://doi.org/10.1021/acs.chemrev.0c01264
  4. 압전재료의 기초 물성 측정 vol.34, pp.5, 2021, https://doi.org/10.4313/jkem.2021.34.5.301
  5. Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites vol.58, pp.6, 2021, https://doi.org/10.1007/s43207-021-00144-2
  6. Induced slim ferroelectric hysteresis loops and enhanced energy-storage properties of Mn-doped (Pb0·93La0.07)(Zr0·82Ti0.18)O3 anti-ferroelectric thick films by aerosol deposition vol.47, pp.22, 2019, https://doi.org/10.1016/j.ceramint.2021.08.039