DOI QR코드

DOI QR Code

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali (Department of Mathematics School of Mathematical Sciences Hakim Sabzevari University)
  • 투고 : 2018.03.13
  • 심사 : 2019.06.11
  • 발행 : 2019.07.31

초록

Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.

키워드

참고문헌

  1. R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423. https://doi.org/10.1006/jmaa.1995.1027
  2. R. Easton, Chain transitivity and the domain of in uence of an invariant set, in The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 95-102, Lecture Notes in Math., 668, Springer, Berlin.
  3. A. Fakhari, F. H. Ghane, and A. Sarizadeh, Some properties of the strong chain recurrent set, Commun. Korean Math. Soc. 25 (2010), no. 1, 97-104. https://doi.org/10.4134/CKMS.2010.25.1.097
  4. A. Fathi and P. Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), no. 4, 1187-1207. https://doi.org/10.1017/etds.2013.107
  5. J. Franks, A variation on the Poincare-Birkhoff theorem, in Hamiltonian dynamical systems (Boulder, CO, 1987), 111-117, Contemp. Math., 81, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/081/986260
  6. R. Gu, The asymptotic average shadowing property and transitivity, Nonlinear Anal. 67 (2007), no. 6, 1680-1689. https://doi.org/10.1016/j.na.2006.07.040
  7. M. Mazur, Weak shadowing for discrete dynamical systems on nonsmooth mani-folds, J. Math. Anal. Appl. 281 (2003), no. 2, 657-662. https://doi.org/10.1016/S0022-247X(03)00186-0
  8. R. Potrie, Recurrence of non-resonant homeomorphisms on the torus, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3973-3981. https://doi.org/10.1090/S0002-9939-2012-11249-3
  9. D. Richeson and J. Wiseman, Chain recurrence rates and topological entropy, Topology Appl. 156 (2008), no. 2, 251-261. https://doi.org/10.1016/j.topol.2008.07.005
  10. J. Wiseman, The generalized recurrent set and strong chain recurrence, Ergodic Theory Dynam. Systems 38 (2018), no. 2, 788-800. https://doi.org/10.1017/etds.2016.35
  11. K. Yokoi, On strong chain recurrence for maps, Ann. Polon. Math. 114 (2015), no. 2, 165-177. https://doi.org/10.4064/ap114-2-6