DOI QR코드

DOI QR Code

GENERATING NON-JUMPING NUMBERS OF HYPERGRAPHS

  • Liu, Shaoqiang (College of Mathematics and Econometrics Hunan University) ;
  • Peng, Yuejian (Institute of Mathematics Hunan University)
  • Received : 2018.08.28
  • Accepted : 2018.12.18
  • Published : 2019.07.31

Abstract

The concept of jump concerns the distribution of $Tur{\acute{a}}n$ densities. A number ${\alpha}\;{\in}\;[0,1)$ is a jump for r if there exists a constant c > 0 such that if the $Tur{\acute{a}}n$ density of a family $\mathfrak{F}$ of r-uniform graphs is greater than ${\alpha}$, then the $Tur{\acute{a}}n$ density of $\mathfrak{F}$ is at least ${\alpha}+c$. To determine whether a number is a jump or non-jump has been a challenging problem in extremal hypergraph theory. In this paper, we give a way to generate non-jumps for hypergraphs. We show that if ${\alpha}$, ${\beta}$ are non-jumps for $r_1$, $r_2{\geq}2$ respectively, then $\frac{{\alpha}{\beta}(r_1+r_2)!r_1^{r_1}r_2^{r_2}}{r_1!r_2!(r_1+R_2)^{r_1+r_2}}$ is a non-jump for $r_1+r_2$. We also apply the Lagrangian method to determine the $Tur{\acute{a}}n$ density of the extension of the (r - 3)-fold enlargement of a 3-uniform matching.

Keywords

References

  1. R. Baber and J. Talbot, Hypergraphs do jump, Combin. Probab. Comput. 20 (2011), no. 2, 161-171. https://doi.org/10.1017/S0963548310000222
  2. P. Erdos, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190. https://doi.org/10.1007/BF02759942
  3. P. Erdos and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966), 51-57.
  4. P. Erdos and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091. https://doi.org/10.1090/S0002-9904-1946-08715-7
  5. P. Frankl and Z. Furedi, Extremal problems whose solutions are the blowups of the small Witt-designs, J. Combin. Theory Ser. A 52 (1989), no. 1, 129-147. https://doi.org/10.1016/0097-3165(89)90067-8
  6. P. Frankl, Y. Peng, V. Rodl, and J. Talbot, A note on the jumping constant conjecture of Erdos, J. Combin. Theory Ser. B 97 (2007), no. 2, 204-216. https://doi.org/10.1016/j.jctb.2006.05.004
  7. P. Frankl and V. Rodl, Hypergraphs do not jump, Combinatorica 4 (1984), no. 2-3, 149-159. https://doi.org/10.1007/BF02579215
  8. R. Gu, X. Li, Z. Qin, Y. Shi, and K. Yang, Non-jumping numbers for 5-uniform hypergraphs, Appl. Math. Comput. 317 (2018), 234-251. https://doi.org/10.1016/j.amc.2017.08.014
  9. T. Jiang, Y. Peng, and B. Wu, Lagrangian densities of some sparse hypergraphs and Turan numbers of their extensions, European J. Combin. 73 (2018), 20-36. https://doi.org/10.1016/j.ejc.2018.05.001
  10. T. Johnston and L. Lu, Strong jumps and Lagrangians of non-uniform hypergraphs, arXiv:1403.1220v1.
  11. G. Katona, T. Nemetz, and M. Simonovits, On a problem of Turan in the theory of graphs, Mat. Lapok 15 (1964), 228-238.
  12. T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canad. J. Math. 17 (1965), 533-540. https://doi.org/10.4153/CJM-1965-053-6
  13. Y. Peng, On substructure densities of hypergraphs, Graphs Combin. 25 (2009), no. 4, 583-600. https://doi.org/10.1007/s00373-009-0859-3
  14. Y. Peng, On jumping densities of hypergraphs, Graphs Combin. 25 (2009), no. 5, 759-766. https://doi.org/10.1007/s00373-010-0874-4
  15. Y. Peng and C. Zhao, On non-strong jumping numbers and density structures of hypergraphs, Discrete Math. 309 (2009), no. 12, 3917-3929. https://doi.org/10.1016/j.disc.2008.11.007
  16. O. Pikhurko, On possible Turan densities, Israel J. Math. 201 (2014), no. 1, 415-454. https://doi.org/10.1007/s11856-014-0031-5
  17. A. F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), no. 2, 207-215. https://doi.org/10.1007/BF02124681
  18. P. Turan, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452.