DOI QR코드

DOI QR Code

Ginsenosides: the need to move forward from bench to clinical trials

  • Yu, Seung Eun (Biomarker Branch, Research Institute, National Cancer Center) ;
  • Mwesige, Benjamin (Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center) ;
  • Yi, Young-Su (Department of Pharmaceutical and Biomedical Engineering, Cheongju University) ;
  • Yoo, Byong Chul (Biomarker Branch, Research Institute, National Cancer Center)
  • Received : 2018.07.26
  • Accepted : 2018.09.04
  • Published : 2019.07.15

Abstract

Panax ginseng, known as Koran ginseng, one of the most commonly used traditional plants, has been demonstrated to show a wide range of pharmacological applications. Ginsenosides are the major active ingredients found in ginseng and are responsible for the biological and pharmacological activities, such as antioxidation, antiinflammation, vasorelaxation, and anticancer actions. Existing studies have mostly focused on identifying and purifying single ginsenosides and investigating pharmacological activities and molecular mechanisms in cells and animal models. However, ginsenoside studies based on clinical trials have been very limited. Therefore, this review aimed to discuss the currently available clinical trials on ginsenosides and provide insights and future directions for developing ginsenosides as efficacious and safe drugs for human disease.

Keywords

References

  1. Choi J, Kim TH, Choi TY, Lee MS. Ginseng for health care: a systematic review of randomized controlled trials in Korean literature. PLoS One 2013;8, e59978. https://doi.org/10.1371/journal.pone.0059978
  2. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. https://doi.org/10.1186/1749-8546-5-20
  3. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  4. Jong MC, van de Vijver L, Busch M, Fritsma J, Seldenrijk R. Integration of complementary and alternative medicine in primary care: what do patients want? Patient Educ Couns 2012;89:417-22. https://doi.org/10.1016/j.pec.2012.08.013
  5. Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33:717-35. https://doi.org/10.1016/j.biotechadv.2015.03.001
  6. Ahuja A, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  7. Nah SY. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014;5:98. https://doi.org/10.3389/fphys.2014.00098
  8. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4:79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  9. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  10. Li JB, Zhang R, Han X, Piao CL. Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz J Med Biol Res 2018;51:e7139. https://doi.org/10.1590/1414-431x20177139
  11. Angelova N, Kong HW, van der Heijden R, Yang SY, Choi YH, Kim HK, Wang M, Hankemeier T, van der Greef J, Xu G, et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 2008;19:2-16. https://doi.org/10.1002/pca.1049
  12. Sodrul IMD, Wang C, Chen X, Du J, Sun H. Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. Oncotarget 2018;9:2931-50. https://doi.org/10.18632/oncotarget.23407
  13. Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015;32:256-72. https://doi.org/10.1039/C4NP00080C
  14. Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem Anal 2018;29:331-40. https://doi.org/10.1002/pca.2752
  15. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  16. Kang OJ, Kim JS. Comparison of ginsenoside contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev Nutr Food Sci 2016;21:389-92. https://doi.org/10.3746/pnf.2016.21.4.389
  17. Zhang X, Zhang S, Sun Q, Jiao W, Yan Y. Compound K induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules 2018;23.
  18. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37:8-29. https://doi.org/10.5142/jgr.2013.37.8
  19. Baek SH, Shin BK, Kim NJ, Chang SY, Park JH. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. J Ginseng Res 2017;41:233-9. https://doi.org/10.1016/j.jgr.2016.03.008
  20. Jeong A, Lee HJ, Jeong SJ, Lee EO, Bae H, Kim SH. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. Biol Pharm Bull 2010;33:945-50. https://doi.org/10.1248/bpb.33.945
  21. Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X, Ngok-Shun Wong R. Ginsenoside-Rb1-mediated anti-angiogenesis via regulating PEDF and miR- 33a through the activation of PPAR-gamma pathway. Front Pharmacol 2017;8:783. https://doi.org/10.3389/fphar.2017.00783
  22. Lan TH, Xu ZW, Wang Z, Wu YL, Wu WK, Tan HM. Ginsenoside Rb1 prevents homocysteine-induced endothelial dysfunction via PI3K/Akt activation and PKC inhibition. Biochem Pharmacol 2011;82:148-55. https://doi.org/10.1016/j.bcp.2011.04.001
  23. Kim HK. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J Ginseng Res 2013;37:451-6. https://doi.org/10.5142/jgr.2013.37.451
  24. Chang WH, Tsai YL, Huang CY, Hsieh CC, Chaunchaiyakul R, Fang Y, Lee SD, Kuo CH. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. J Int Soc Sports Nutr 2015;12:34. https://doi.org/10.1186/s12970-015-0095-6
  25. Shang WB, Yu XZ, Wang GQ, Zhao J. Effect of ginsenoside Rb1 in ameliorating insulin resistance and ectopic fat deposition in obese mice induced by high fat diet. Zhongguo Zhong Yao Za Zhi 2013;38:4119-23.
  26. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-23. https://doi.org/10.1271/bbb.80205
  27. Fujimoto J, Sakaguchi H, Aoki I, Toyoki H, Khatun S, Tamaya T. Inhibitory effect of ginsenoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane. Eur J Gynaecol Oncol 2001;22:339-41.
  28. Kim EJ, Lee HI, Chung KJ, Noh YH, Ro Y, Koo JH. The ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions. BMB Rep 2009;42:194-9. https://doi.org/10.5483/BMBRep.2009.42.4.194
  29. Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011;34:1201-8. https://doi.org/10.1007/s12272-011-0719-6
  30. Kang KS, Kim HY, Baek SH, Yoo HH, Park JH, Yokozawa T. Study on the hydroxyl radical scavenging activity changes of ginseng and ginsenoside-Rb2 by heat processing. Biol Pharm Bull 2007;30:724-8. https://doi.org/10.1248/bpb.30.724
  31. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 1994;17:635-9. https://doi.org/10.1248/bpb.17.635
  32. Huang Q, Gao B, Jie Q, Wei BY, Fan J, Zhang HY, Zhang JK, Li XJ, Shi J, Luo ZJ, et al. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014;66:306-14. https://doi.org/10.1016/j.bone.2014.06.010
  33. Chen JC, Chen LD, Tsauer W, Tsai CC, Chen BC, Chen YJ. Effects of ginsenoside Rb2 and Rc on inferior human sperm motility in vitro. Am J Chin Med 2001;29:155-60. https://doi.org/10.1142/S0192415X01000174
  34. Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, Vuksan V. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 2014;8:537-41. https://doi.org/10.1016/j.jash.2014.04.004
  35. Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013;21:381-90. https://doi.org/10.4062/biomolther.2013.053
  36. Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. FASEB J 2006;20:1269-71. https://doi.org/10.1096/fj.05-5530fje
  37. Kang A, Xie T, Zhu D, Shan J, Di L, Zheng X. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J Agric Food Chem 2017;65:6861-9. https://doi.org/10.1021/acs.jafc.7b02386
  38. Wang J, Yu XF, Zhao JJ, Shi SM, Fu L, Sui DY. Ginsenoside Rg3 attenuated omethoate-induced lung injury in rats. Hum Exp Toxicol 2016;35:677-84. https://doi.org/10.1177/0960327115597984
  39. Jiang J, Yuan Z, Sun Y, Bu Y, Li W, Fei Z. Ginsenoside Rg3 enhances the antiproliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017;96:619-25. https://doi.org/10.1016/j.biopha.2017.10.043
  40. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738694.
  41. Sun Y, Lin H, Zhu Y, Feng J, Chen Z, Li G, Zhang X, Zhang Z, Tang J, Shi M, et al. A randomized, prospective, multi-centre clinical trial of NP regimen (vinorelbine+cisplatin) plus Gensing Rg3 in the treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi 2006;9:254-8.
  42. Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 2008;14:33-6. https://doi.org/10.1007/s11655-007-9002-6
  43. Chen ZJ, Cheng J, Huang YP, Han SL, Liu NX, Zhu GB, Yao JG. Effect of adjuvant chemotherapy of ginsenoside Rg3 combined with mitomycin C and tegafur in advanced gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2007;10:64-6.
  44. Huang JY, Sun Y, Fan QX, Zhang YQ. Efficacy of Shenyi Capsule combined with gemcitabine plus cisplatin in treatment of advanced esophageal cancer: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 2009;7:1047-51. https://doi.org/10.3736/jcim20091105
  45. Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, Kong R, Chen Z, Duan Y, Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced nonsmall cell lung cancer harboring EGFR active mutation. Oncotarget 2016;7:70535-45. https://doi.org/10.18632/oncotarget.12059
  46. Kim MJ, Yun H, Kim DH, Kang I, Choe W, Kim SS, Ha J. AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2. J Ginseng Res 2014;38:16-21. https://doi.org/10.1016/j.jgr.2013.11.010
  47. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 2003;26:1581-4. https://doi.org/10.1248/bpb.26.1581
  48. Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 2017;9:59. https://doi.org/10.1186/s13098-017-0254-9
  49. Vinoth Kumar R, Oh TW, Park YK. Anti-inflammatory effects of ginsenoside- Rh2 inhibits LPS-induced activation of microglia and overproduction of inflammatory mediators via modulation of TGF-beta1/smad pathway. Neurochem Res 2016;41:951-7. https://doi.org/10.1007/s11064-015-1804-x
  50. Qiu J, Li W, Feng SH, Wang M, He ZY. Ginsenoside Rh2 promotes nonamyloidgenic cleavage of amyloid precursor protein via a cholesteroldependent pathway. Genet Mol Res 2014;13:3586-98. https://doi.org/10.4238/2014.May.9.2
  51. Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2013;84:303-7. https://doi.org/10.1016/j.fitote.2012.12.021
  52. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 2000;23:1481-5. https://doi.org/10.1248/bpb.23.1481
  53. Zheng MM, Xu FX, Li YJ, Xi XZ, Cui XW, Han CC, Zhang XL. Study on transformation of ginsenosides in different methods. Biomed Res Int 2017;2017:8601027.
  54. Tang CZ, Li KR, Yu Q, Jiang Q, Yao J, Cao C. Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Free Radic Biol Med 2018;117:238-46. https://doi.org/10.1016/j.freeradbiomed.2018.02.001
  55. Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9. https://doi.org/10.1016/j.jep.2012.12.047
  56. Luchtefeld R, Kostoryz E, Smith RE. Determination of ginsenosides Rb1, Rc, and Re in different dosage forms of ginseng by negative ion electrospray liquid chromatography-mass spectrometry. J Agric Food Chem 2004;52:4953-6. https://doi.org/10.1021/jf040104j
  57. Oh Y, Lim HW, Park KH, Huang YH, Yoon JY, Kim K, Lim CJ. Ginsenoside Rc protects against UVBinduced photooxidative damage in epidermal keratinocytes. Mol Med Rep 2017;16:2907-14. https://doi.org/10.3892/mmr.2017.6943
  58. Kim DH, Park CH, Park D, Choi YJ, Park MH, Chung KW, Kim SR, Lee JS, Chung HY. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Arch Pharm Res 2014;37:813-20. https://doi.org/10.1007/s12272-013-0223-2
  59. Shin YH, Jung OM, Nah JJ, Nam KY, Kim CY, Nah SY. Ginsenosides that produce differential antinociception in mice. Gen Pharmacol 1999;32:653-9. https://doi.org/10.1016/S0306-3623(98)00239-0
  60. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANKbinding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2017;41:127-33. https://doi.org/10.1016/j.jgr.2016.02.001
  61. Lee JH, Choi SH, Kwon OS, Shin TJ, Lee BH, Yoon IS, Pyo MK, Rhim H, Lim YH, Shim YH, et al. Effects of ginsenosides, active ingredients of Panax ginseng, on development, growth, and life span of Caenorhabditis elegans. Biol Pharm Bull 2007;30:2126-34. https://doi.org/10.1248/bpb.30.2126
  62. Lee MS, Hwang JT, Kim SH, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771-6. https://doi.org/10.1016/j.jep.2009.11.022
  63. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  64. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143-9. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  65. Huang L, Liu LF, Liu J, Dou L, Wang GY, Liu XQ, Yuan QL. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons. Neural Regen Res 2016;11:319-25. https://doi.org/10.4103/1673-5374.177741
  66. Nie L, Xia J, Li H, Zhang Z, Yang Y, Huang X, He Z, Liu J, Yang X. Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer's disease. Oxid Med Cell Longev 2017;2017:6473506.
  67. Wang H, Peng D, Xie. J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 2009;4:20. https://doi.org/10.1186/1749-8546-4-20
  68. Li XF, Lui CN, Jiang ZH, Ken YK. Neuroprotective effects of ginsenosides Rh1 and Rg2 on neuronal cells. Chin Med 2011;6:19. https://doi.org/10.1186/1749-8546-6-19
  69. Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3beta via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem Biol Interact 2012;195:35-42. https://doi.org/10.1016/j.cbi.2011.10.006
  70. Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J Ethnopharmacol 2008;115:441-8. https://doi.org/10.1016/j.jep.2007.10.026
  71. Lee SY, Jeong JJ, Eun SH, Kim DH. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 2015;762:333-43. https://doi.org/10.1016/j.ejphar.2015.06.011
  72. Jung JS, Lee SY, Kim DH, Kim HS. Protopanaxatriol ginsenoside Rh1 upregulates phase II antioxidant enzyme gene expression in rat primary astrocytes: involvement of MAP kinases and Nrf2/ARE signaling. Biomol Ther (Seoul) 2016;24:33-9. https://doi.org/10.4062/biomolther.2015.129
  73. Lu C, Lv J, Dong L, Jiang N, Wang Y, Wang Q, Li Y, Chen S, Fan B, Wang F, et al. Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamineinduced cognitive deficits in mice. Phytother Res 2018;32:1056-63. https://doi.org/10.1002/ptr.6044
  74. Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2018;42:90-7. https://doi.org/10.1016/j.jgr.2017.01.003
  75. Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 2017;41:69-77. https://doi.org/10.1016/j.jgr.2016.01.001
  76. Lee KJ, Ji GE. The effect of fermented red ginseng on depression is mediated by lipids. Nutr Neurosci 2014;17:7-15. https://doi.org/10.1179/1476830513Y.0000000059
  77. Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6. https://doi.org/10.1097/WAD.0b013e31816c92e6
  78. Choi HK, Seong DH, Rha KH. Clinical efficacy of Korean red ginseng for erectile dysfunction. Int J Impot Res 1995;7:181-6.

Cited by

  1. ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer vol.2020, 2019, https://doi.org/10.1155/2020/5047987
  2. Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm vol.11, 2019, https://doi.org/10.3389/fphar.2020.602999
  3. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects vol.25, pp.11, 2020, https://doi.org/10.3390/molecules25112719
  4. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? vol.160, 2019, https://doi.org/10.1016/j.phrs.2020.105062
  5. Effects of a herbal formulation, KGC3P, and its individual component, nepetin, on coal fly dust-induced airway inflammation vol.10, pp.1, 2019, https://doi.org/10.1038/s41598-020-68965-5
  6. Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampal Neuronal Apoptosis in Experimental Vascular Dementia Mice by Promoting GPR30 Expression vol.2021, 2019, https://doi.org/10.1155/2021/2412220
  7. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  8. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors vol.93, 2019, https://doi.org/10.1016/j.bbi.2020.12.004
  9. The effect of ginsenosides on depression in preclinical studies: A systematic review and meta-analysis vol.45, pp.3, 2019, https://doi.org/10.1016/j.jgr.2020.08.006