DOI QR코드

DOI QR Code

Impact of NR1I2, adenosine triphosphate-binding cassette transporters genetic polymorphisms on the pharmacokinetics of ginsenoside compound K in healthy Chinese volunteers

  • Zhou, Luping (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Chen, Lulu (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Wang, Yaqin (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Huang, Jie (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University) ;
  • Yang, Guoping (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University) ;
  • Tan, Zhirong (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Wang, Yicheng (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Liao, Jianwei (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Zhou, Gan (Department of Clinical Pharmacology, Xiangya Hospital, Central South University) ;
  • Hu, Kai (Department of Neurology, Xiangya Hospital, Central South University) ;
  • Li, Zhenyu (Department of Cardiology, Xiangya Hospital, Central South University) ;
  • Ouyang, Dongsheng (Department of Clinical Pharmacology, Xiangya Hospital, Central South University)
  • Received : 2018.02.07
  • Accepted : 2018.04.17
  • Published : 2019.07.15

Abstract

Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.

Keywords

References

  1. Yun TK. Panax ginsengea non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55. https://doi.org/10.1016/S1470-2045(00)00196-0
  2. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev. 2004;9:259-74.
  3. Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res. 2012;36:27-39. https://doi.org/10.5142/jgr.2012.36.1.27
  4. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res. 2013;37:8-29. https://doi.org/10.5142/jgr.2013.37.8
  5. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137:183Se5S. https://doi.org/10.1093/jn/137.1.183S
  6. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
  7. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065
  8. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administrationemeasurement of compound K by enzyme immunoassay. Biol Pharm Bull. 1998;21:245-9. https://doi.org/10.1248/bpb.21.245
  9. Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015;100:208-20. https://doi.org/10.1016/j.fitote.2014.11.019
  10. Chen MY, Shao L, Zhang W, Wang CZ, Zhou HH, Huang WH, Yuan CS. Metabolic analysis of Panax notoginseng saponins with gut microbiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS. J Pharm Biomed Anal 2017;150:199-207. https://doi.org/10.1016/j.jpba.2017.12.011
  11. Chen L, Zhou L, Wang Y, Yang G, Huang J, Tan Z, Wang Y, Zhou G, Liao J, Ouyang D. Food and sex-related impacts on the pharmacokinetics of a singledose of ginsenoside compound K in healthy subjects. Front Pharmacol 2017;8:636. https://doi.org/10.3389/fphar.2017.00636
  12. Chen L, Zhou L, Huang J, Wang Y, Yang G, Tan Z, Wang Y, Zhou G, Liao J, Ouyang D. Single- and multiple-dose trials to determine the pharmacokinetics, safety, tolerability, and sex effect of oral ginsenoside compound K in healthy Chinese volunteers. Front Pharmacol 2018;8:965. https://doi.org/10.3389/fphar.2017.00965
  13. Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistanceassociated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 2008;75:1302-12. https://doi.org/10.1016/j.bcp.2007.12.001
  14. Dai P, Zhu L, Yang X, Zhao M, Shi J, Wang Y, Lu L, Liu Z. Multidrug resistanceassociated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Life Sci. 2015;127:66-72. https://doi.org/10.1016/j.lfs.2015.02.011
  15. de Wolf C, Jansen R, Yamaguchi H, de Haas M, van de Wetering K, Wijnholds J, Beijnen J, Borst P. Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Mol Cancer Ther 2008;7:3092-102. https://doi.org/10.1158/1535-7163.MCT-08-0427
  16. Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol. 2010;596:95-121. https://doi.org/10.1007/978-1-60761-416-6_6
  17. Zhang B, Zhu XM, Hu JN, Ye H, Luo T, Liu XR, Li HY, Li W, Zheng YN, Deng ZY. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60:10278-84. https://doi.org/10.1021/jf303160y
  18. Yang Z, Wang JR, Niu T, Gao S, Yin T, You M, Jiang ZH, Hu M. Inhibition of Pglycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metab Dispos 2012;40:1538-44. https://doi.org/10.1124/dmd.111.044008
  19. Li J, Zhong W, Wang W, Hu S, Yuan J, Zhang B, Hu T, Song G. Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodiuminduced colitis and inhibits inflammatory responses by suppressing NFkappaB activation. PLoS One 2014;9, e87810. https://doi.org/10.1371/journal.pone.0087810
  20. di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Aspects Med 2009;30:297-343. https://doi.org/10.1016/j.mam.2009.04.002
  21. Moon C, Zhang W, Sundaram N, Yarlagadda S, Reddy VS, Arora K, Helmrath MA, Naren AP. Drug-induced secretory diarrhea: a role for CFTR. Pharmacol Res 2015;102:107-12. https://doi.org/10.1016/j.phrs.2015.08.024
  22. Moon C, Zhang W, Ren A, Arora K, Sinha C, Yarlagadda S, Woodrooffe K, Schuetz JD, Valasani KR, de Jonge HR, et al. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to druginduced diarrhea. J Biol Chem 2015;290:11246-57. https://doi.org/10.1074/jbc.M114.605410
  23. Zeino M, Saeed ME, Kadioglu O, Efferth T. The ability of molecular docking to unravel the controversy and challenges related to P-glycoproteinea wellknown, yet poorly understood drug transporter. Invest New Drugs 2014;32:618-25. https://doi.org/10.1007/s10637-014-0098-1
  24. Canaparo R, Finnstrom N, Serpe L, Nordmark A, Muntoni E, Eandi M, Rane A, Zara GP. Expression of CYP3A isoforms and P-glycoprotein in human stomach, jejunum and ileum. Clin Exp Pharmacol Physiol 2007;34:1138-44. https://doi.org/10.1111/j.1440-1681.2007.04691.x
  25. Zakeri-Milani P, Valizadeh H. Intestinal transporters: enhanced absorption through P-glycoprotein-related drug interactions. Expert Opin Drug Metab Toxicol 2014;10:859-71. https://doi.org/10.1517/17425255.2014.905543
  26. Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem 2011;50:161-78. https://doi.org/10.1042/bse0500161
  27. Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017;116:45-62. https://doi.org/10.1016/j.addr.2016.09.004
  28. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of genetic polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet 2015;54:709-35. https://doi.org/10.1007/s40262-015-0267-1
  29. Lee SS, Kim SY, Kim WY, Thi-Le H, Yoon YR, Yea SS, Shin JG. MDR1 genetic polymorphisms and comparison of MDR1 haplotype profiles in Korean and Vietnamese populations. Ther Drug Monit. 2005;27:531-5. https://doi.org/10.1097/01.ftd.0000164293.75854.11
  30. Xuan M, Li H, Fu R, Yang Y, Zhang D, Zhang X, Yang R. Association of ABCB1 gene polymorphisms and haplotypes with therapeutic efficacy of glucocorticoids in Chinese patients with immune thrombocytopenia. Hum Immunol 2014;75:317-21. https://doi.org/10.1016/j.humimm.2014.01.013
  31. Shilbayeh S. The impact of genetic polymorphisms on time required to attain the target tacrolimus levels and subsequent pharmacodynamic outcomes in pediatric kidney transplant patients. Saudi J Kidney Dis Transpl 2014;25:266-77. https://doi.org/10.4103/1319-2442.128501
  32. Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B, Wang L. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene 2013;512:226-31. https://doi.org/10.1016/j.gene.2012.10.048
  33. Gomez-Bravo MA, Salcedo M, Fondevila C, Suarez F, Castellote J, Rufian S, Pons JA, Alamo JM, Millan O, Brunet M. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. J Clin Pharmacol 2013;53:1146-54.
  34. You GF, Morris ME. Drug transporters: molecular characterization and role in drug disposition. John Wiley & Sons, Inc.; 2006.
  35. Liu YH, Di YM, Zhou ZW, Mo SL, Zhou SF. Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol 2010;37:115-20. https://doi.org/10.1111/j.1440-1681.2009.05252.x
  36. Yu XQ, Xue CC, Wang G, Zhou SF. Multidrug resistance associated proteins as determining factors of pharmacokinetics and pharmacodynamics of drugs. Curr Drug Metab 2007;8:787-802. https://doi.org/10.2174/138920007782798171
  37. Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc Natl Acad Sci U S A 1999;96:5310-5. https://doi.org/10.1073/pnas.96.9.5310
  38. Bear CE, Li CH, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 1992;68:809-18. https://doi.org/10.1016/0092-8674(92)90155-6
  39. Sanchez-Martin A, Cabrera Figueroa S, Cruz R, Porras-Hurtado L, Calvo-Boyero F, Rasool M, Tormes T, Dominguez-Gil Hurle A, Carracedo A. Genegene interactions between DRD3, MRP4 and CYP2B6 polymorphisms and its influence on the pharmacokinetic parameters of efavirenz in HIV infected patients. Drug Metab Pharmacokinet 2016;31:349-55. https://doi.org/10.1016/j.dmpk.2016.06.001
  40. Conseil G, Deeley RG, Cole SP. Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters. Pharmacogenet Genomics 2005;15:523-33. https://doi.org/10.1097/01.fpc.0000167333.38528.ec
  41. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989;245:1059-65. https://doi.org/10.1126/science.2772657
  42. Costes B, Girodon E, Ghanem N, Flori E, Jardin A, Soufir JC, Goossens M. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet 1995;3:285-93. https://doi.org/10.1159/000472312
  43. Bodewes FA, van der Wulp MY, Beharry S, Doktorova M, Havinga R, Boverhof R, James Phillips M, Durie PR, Verkade HJ. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr-/-) mouse model with hepatobiliary pathology. J Cyst Fibros 2015;14:440-6. https://doi.org/10.1016/j.jcf.2014.12.010
  44. Debray D, Rainteau D, Barbu V, Rouahi M, El Mourabit H, Lerondel S, Rey C, Humbert L, Wendum D, Cottart CH, et al. Defects in gallbladder emptying and bile Acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 2012;142:1581-91. e6. https://doi.org/10.1053/j.gastro.2012.02.033
  45. Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos 2006;34:690-5. https://doi.org/10.1124/dmd.105.008219
  46. Karibe T, Hagihara-Nakagomi R, Abe K, Imaoka T, Mikkaichi T, Yasuda S, Hirouchi M, Watanabe N, Okudaira N, Izumi T. Evaluation of the usefulness of breast cancer resistance protein (BCRP) knockout mice and BCRP inhibitortreated monkeys to estimate the clinical impact of BCRP modulation on the pharmacokinetics of BCRP substrates. Pharm Res 2015;32:1634-47. https://doi.org/10.1007/s11095-014-1563-4
  47. Lemos C, Giovannetti E, Zucali PA, Assaraf YG, Scheffer GL, van der Straaten T, D'Incecco A, Falcone A, Guchelaar HJ, Danesi R, et al. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics 2011;12:159-70. https://doi.org/10.2217/pgs.10.172
  48. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009;86:197-203. https://doi.org/10.1038/clpt.2009.79
  49. Jani M, Ambrus C, Magnan R, Jakab KT, Beery E, Zolnerciks JK, Krajcsi P. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014;88:1205-48. https://doi.org/10.1007/s00204-014-1224-8
  50. Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 2007;72:967-75. https://doi.org/10.1124/mol.107.034751
  51. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 2003;331:815-28. https://doi.org/10.1016/S0022-2836(03)00795-2
  52. Watkins RE, Noble SM, Redinbo MR. Structural insights into the promiscuity and function of the human pregnane X receptor. Curr Opin Drug Discov Devel 2002;5:150-8.
  53. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001;276:14581-7. https://doi.org/10.1074/jbc.M010173200
  54. Olinga P, Elferink MG, Draaisma AL, Merema MT, Castell JV, Perez G, Groothuis GM. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur J Pharm Sci 2008;33:380-9. https://doi.org/10.1016/j.ejps.2008.01.008
  55. Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, Eichelbaum M, Siegmund W, Schrenk D. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 2000;157:1575-80. https://doi.org/10.1016/S0002-9440(10)64794-3
  56. Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos 2006;34:1756-63. https://doi.org/10.1124/dmd.106.010033
  57. Qiao EQ, Yang HJ. Effect of pregnane X receptor expression on drug resistance in breast cancer. Oncol Lett 2014;7:1191-6. https://doi.org/10.3892/ol.2014.1817
  58. Moon JY, Chang BC, Lee KE, Bang JS, Gwak HS. Effects of pregnane X receptor genetic polymorphisms on stable warfarin doses. J Cardiovasc Pharmacol Ther 2015;20:532-8. https://doi.org/10.1177/1074248415578906
  59. Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol 2013;9:253-66. https://doi.org/10.1517/17425255.2013.754010
  60. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007;23:175-205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406
  61. Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y, Pan W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int J Mol Sci 2016;17.
  62. Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017;9:941-58. https://doi.org/10.1007/s12551-017-0363-6
  63. Wittgen HG, van den Heuvel JJ, Krieger E, Schaftenaar G, Russel FG, Koenderink JB. Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem Pharmacol 2012;84:366-73. https://doi.org/10.1016/j.bcp.2012.04.012

Cited by

  1. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides vol.103, pp.17, 2019, https://doi.org/10.1007/s00253-019-09951-4
  2. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2019, https://doi.org/10.1007/s12272-019-01184-3
  3. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities vol.10, pp.7, 2019, https://doi.org/10.3390/biom10071028
  4. Ginsenoside Compound K Promotes Intestinal Peristalsis and the Pharmacokinetic of Metabolite 20(S)-Protopanaxadiol in Relation to Diarrhea vol.2021, 2019, https://doi.org/10.1155/2021/5521899
  5. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking vol.12, 2019, https://doi.org/10.3389/fphar.2021.746208