DOI QR코드

DOI QR Code

Effects of Anti-Fouling System(AFS) on embryos of a sea urchin, Mesocentrotus nudus

국내 주상용 Anti-Fouling System 처리 활성물질이 둥근성게(Mesocentrotus nudus)의 배아에 미치는 영향

  • 서진영 (한국해양과학기술원 위해성분석연구센터) ;
  • 강정훈 (한국해양과학기술원 위해성분석연구센터) ;
  • 최진우 (한국해양과학기술원 위해성분석연구센터)
  • Received : 2019.08.26
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

In this study, we aimed to assess the toxicity of biocide present in antifouling paint on embryos of sea urchin, Mesocentrotus nudus. Three types of biocide (Sea-nine 211, Diuron, and Irgarol 1051) were selected for the exposure experiment. The EC50 of Sea-nine, Diuron, and Irgarol on the fertilization rate of sea urchin were 32.8 ㎍ L-1, 7,975 ㎍ L-1 and 6,995 ㎍ L-1, respectively. The EC50 of Sea-nine, Diuron, and Irgarol on the development rate of sea urchin were 31.6 ㎍ L-1, 3,044 ㎍ L-1, and 2,267 ㎍ L-1, respectively. The highest toxicity was observed in the presence of Sea-nine.

본 연구는 둥근성게(Mesocentrotus nudus)의 배아를 이용하여 전 세계적으로 많이 이용되고 있는 살생물제(Biocides)에 대한 독성 평가를 수행하였다. 실험에 사용한 살생물제는 총 3종, Sea-nine 211, Diuron, Irgarol 1051이었다. 그 중, 둥근성게(M. nudus)의 수정과 발생률에 미치는 영향은 모두 EC50을 기준으로 보았을 때, Sea-nine의 독성이 가장 강한 것으로 나타났고, Irgarol, Diuron의 순으로 나타났다. 이러한 살생물제, 특히 Sea-nine은 해양무척추동물의 초기 발생과정과 유생의 성장과정에 치명적인 영향이 있는 것으로 알려져 있으므로 이 물질들에 대한 관리가 필요할 것으로 판단된다.

Keywords

References

  1. Alzieu C. 2000. Environmental impact of TBT: the french experience. Sci. Total Environ. 258:99-102. https://doi.org/10.1016/S0048-9697(00)00510-6
  2. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001
  3. Arrhenius A, T Backhaus, F Gronvall, M Junghans, M Scholze and H Blanck. 2006. Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, irgarol, and sea-nine. Arch. Environ. Contam. Toxicol. 345:335-345.
  4. Bellas J. 2006. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 367:573-585. https://doi.org/10.1016/j.scitotenv.2006.01.028
  5. Bellas J. 2007. Toxicity of the booster biocide Sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus. Aquat. Toxicol. 83:52-61. https://doi.org/10.1016/j.aquatox.2007.03.011
  6. Boxall A, S Comber, A Conrad, J Howcroft and N Zaman. 2000. Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. Mar. Pollut. Bull. 40:898-905. https://doi.org/10.1016/S0025-326X(00)00021-7
  7. Braithwaite RA and RL Fletcher. 2005. The toxicity of Irgarol 1051 and Sea-Nine 211 to the non-target macroalga Fucus serratus Linnaeus, with the aid of an image capture and analysis system. J. Exp. Mar. Biol. Ecol. 322:111-121. https://doi.org/10.1016/j.jembe.2005.01.015
  8. Carr RS, ER Long, HL Windom, DC Chapman, G Thursby, G Sloane and DA Wolfe. 1996. Sediment quality assessment studies of Tampa Bay, Florida. Environ. Toxicol. Chem. 15:1218-1231. https://doi.org/10.1897/1551-5028(1996)015<1218:SQASOT>2.3.CO;2
  9. Cima F and V Matozzo. 2010. Immunotoxic effects of the antifouling compound Sea-Nine 211 on haemocytes of an edible bivalve mollusk. Fresenius Environ. Bull. 19:2297-2302.
  10. Cima F, M Bragadin and L Ballarin. 2008. Toxic effects of new antifouling compounds on tunicate haemocytes. I. Sea-Nine 211 and chlorothalonil. Aquat. Toxicol. 86:299-312. https://doi.org/10.1016/j.aquatox.2007.11.010
  11. Dinnel PA, JM Link and QJ Stober. 1987. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch. Environ. Contam. Toxicol. 16:23-32. https://doi.org/10.1007/BF01055356
  12. Duke NC, AM Bell, DK Pederson, CM Roelfsema and SB Nash. 2005. Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: consequences for marine plant habitats of the GBR world heritage area. Mar. Pollut. Bull. 51:308-324. https://doi.org/10.1016/j.marpolbul.2004.10.040
  13. Fernandez-Alba R, L Piedra, M Mezcua and MD Hernando. 2002. Toxicity of single and mixed contaminants in seawater measured with acute toxicity bioassays. Sci. World J. 2:1115-1120. https://doi.org/10.1100/tsw.2002.221
  14. Hall Jr LW, JM Giddings, KR Solomon and R Balcomb. 1999. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit. Rev. Toxicol. 29:367-437.
  15. Holmes G. 2014. Australia's pesticide environmental risk assessment failure: the case of diuron and sugarcane. Mar. Pollut. Bull. 88:7-13. https://doi.org/10.1016/j.marpolbul.2014.08.007
  16. Jacobson AH and GL Willingham. 2000. Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258:103-110. https://doi.org/10.1016/S0048-9697(00)00511-8
  17. Jones R, J Muller, D Haynes and U Schreiber. 2003. Effects of herbicides diuron and atrazine on corals of the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 251:153-167. https://doi.org/10.3354/meps251153
  18. Kobayashi N and H Okamura. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull. 44:748-751. https://doi.org/10.1016/S0025-326X(02)00052-8
  19. Konstantinou IK and TA Albanis. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ. Int. 30:235-248. https://doi.org/10.1016/S0160-4120(03)00176-4
  20. Koutsaftis A and I Aoyama. 2006. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol. 21:432-439. https://doi.org/10.1002/tox.20202
  21. Lee CH. 2000. A study on the sea urchin (Strongylocentrotus nudus) bioassay: Sperm and fertilized egg tests. Ph.D. Thesis. Seoul National University. p. 185.
  22. Ma J, L Xu, S Wang, R Zheng, S Jin, S Huang and Y Huang. 2002. Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotox. Environ. Safe. 51:128-132. https://doi.org/10.1006/eesa.2001.2113
  23. Magnusson M, K Heimann, M Ridd and AP Negri. 2012. Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Mar. Pollut. Bull. 65: 363-372. https://doi.org/10.1016/j.marpolbul.2011.09.029
  24. Manzo S, S Buono and C Cremisini. 2006. Toxic effects of Irgarol and Diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch. Environ. Contam. Toxicol. 51:61-68. https://doi.org/10.1007/s00244-004-0167-0
  25. Meador JP, BD Ross, PA Dinnel and SJ Picquelle. 1990. An analysis of relationship between a sand-dollar embryo elutriate assay and sediment contaminants from stations in an urban embayment of Puget Sound, Washington. Mar. Environ. Res. 30:251-272. https://doi.org/10.1016/0141-1136(90)90002-6
  26. Menin A, L Ballarin, M Bragadin and F Cima. 2008. Immunotoxicity in ascidians: antifouling compounds alternative to organotins. II. The case of Diuron and TCMS pyridine. J. Environ. Sci. Health B 43:644-654. https://doi.org/10.1080/03601230802352690
  27. Mochida K, H Amano, T Onduka, A Kakuno and K Fujii. 2010. Toxicity of 4,5-dichloro-2-n-octyl-3 2H-isothiazolone Sea-Nine 211 to two marine teleostean fishes. Japanese J. Environ. Toxicol. 13:105-116.
  28. Moon YS, M Kim, CP Hong, JH Kang and JH Jung. 2019. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051, Sea-Nine 211) on non-target marine fish. Ecotox. Environ. Safe. 180:23-32. https://doi.org/10.1016/j.ecoenv.2019.04.070
  29. Moreland DE. 1980. Mechanisms of action of herbicides. Annu. Rev. Plant Physiol. 31:597-638. https://doi.org/10.1146/annurev.pp.31.060180.003121
  30. Nacci DE, R Walsh and E Jackim. 1986. Guidance manual for conducting sperm cell tests with the sea urchin, Arbacia punctulata, for use in testing complex effluents. p. 34. In Aquatic Toxicology Testing Manual. USEPA Environmental Res. Lab., Narragansett, RI.
  31. Negri AP, C Vollhardt, C Humphrey, A Heyward, R Jones, G Eaglesham and KE Fabricius. 2005. Effects of the herbicide diuron on the early life history stages of coral. Mar. Pollut. Bull. 51: 370-383. https://doi.org/10.1016/j.marpolbul.2004.10.053
  32. Okamura H, I Aoyama, D Liu, RJ Maguire, GJ Pacepavicius and YL Lau. 2000. Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res. 34:3523-3530. https://doi.org/10.1016/S0043-1354(00)00095-6
  33. Park KH, KT Lee, JS Lee and KN Han. 2006. Acute toxicity of antifouling agents (TBT, Sea-nine, Cu-pyrithione and Zn-pyrithione) to rockfish Sebastes schlegeli and amphipod Monocorophium acherusicum. J. Kor. Soc. Mar. Environ. Eng. 9:21-28.
  34. Rial D, J Santos-Echeandia, XA Alcarez-Salgado, A Jordi, A Tovar-Sanchez and J Bellas. 2016. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb. Chemosphere 145:384-393. https://doi.org/10.1016/j.chemosphere.2015.11.064
  35. Sherrard RM, CL Murray-Gulde, JH Rodgers and YT Shah. 2003. Comparative toxicity of Chlorothalonil: Ceriodaphnia dubia and Pimephales promelas. Ecotox. Environ. Safe. 56:327-333. https://doi.org/10.1016/S0147-6513(02)00073-8
  36. Terlizzi A, S Fraschetti, P Gianguzza, M Faimali and F Boero. 2001. Environmental impact of antifouling technologies: state of the art and perspectives. Aquat. Conserv. Mar. Freshw. Ecosyst. 317:311-317.
  37. Van Dam JW, AP Negri, JF Mueller and S Uthicke. 2012. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65:373-383. https://doi.org/10.1016/j.marpolbul.2011.08.008
  38. Wang H, Y Li, H Huang, X Xu and Y Wang. 2011. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test. Environ. Toxicol. Chem. 30:692-703. https://doi.org/10.1002/etc.440
  39. Won NI. 2000. Sea urchin bioassay using Korean purple sea urchin Strongylocentrotus nudus: Standardization of well plate method. MS Thesis. Seoul National University. p. 106.
  40. Xu X, X Wang, Y Li, Y Wang and Y Wang. 2011. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis. Hum. Exp. Toxicol. 30:1009-1021. https://doi.org/10.1177/0960327110385958
  41. Yamada H. 2006. Toxicity and preliminary risk assessment of alternative antifouling biocides to aquatic organisms. pp. 213-226.
  42. In Antifouling Paint Biocides. Springer, Berlin, Heidelberg. Zhang AQ, GJ Zhou, MHW Lam and KMY Leung. 2019. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species. Ecotox. Environ. Safe. 182:109455. https://doi.org/10.1016/j.ecoenv.2019.109455