DOI QR코드

DOI QR Code

Quad-Band RF CMOS Power Amplifier for Wireless Communications

무선 통신을 위한 Quad-band RF CMOS 전력증폭기

  • Lee, Milim (School of Electronic Engineering, Soongsil University) ;
  • Yang, Junhyuk (School of Electronic Engineering, Soongsil University) ;
  • Park, Changkun (School of Electronic Engineering, Soongsil University)
  • Received : 2019.05.29
  • Accepted : 2019.06.11
  • Published : 2019.07.31

Abstract

In this paper, we design a power amplifier to support quad-band in wireless communication devices using RF CMOS 180-nm process. The proposed power amplifier consists of low-band 0.9, 1.8, and 2.4 GHz and high-band 5 GHz. We proposed a structure that can support each input matching network without using a switch. For maximum linear output power, the output matching network was designed for impedance conversion to the power matching point. The fabricated quad-band power amplifier was verified using modulation signals. The long-term evolution(LTE) 10 MHz modulated signal was used for 0.9 and 1.8 GHz, and the measured output power is 23.55 and 24.23 dBm, respectively. The LTE 20 MHz modulated signal was used for 1.8 GHz, and the measured output power is 22.24 dBm. The wireless local area network(WLAN) 802.11n modulated signal was used for 2.4 GHz and 5.0 GHz. We obtain maximum linear output power of 20.58 dBm at 2.4 GHz and 17.7 dBm at 5.0 GHz.

본 논문에서는 RF CMOS 180-nm 공정을 이용하여 무선 통신 기기에서 quad-band를 지원하기 위한 전력 증폭기를 설계하였다. 제안한 전력증폭기는 low-band인 0.9,1.8,2.4 GHz 와 high-band인 5 GHz 로 구성되어있으며, 각각 입력 정합회로에서는 스위치를 사용하지 않는 구조를 제안하였다. 그리고 최대 선형 전력 확보를 위해 출력 정합회로는 각 주파수 대역에서의 전력 정합지점으로 임피던스 변환을 진행하였다. 제안한 전력증폭기는 무선 통신 변조 신호를 사용하여 검증하였다. Long-term evolution(LTE) 10 MHz 변조 신호를 이용하여 0.9 GHz 및 1.8 GHz 를 측정하였으며, 이때 출력 전력은 각각 23.55 dBm 및 24.23 dBm으로 측정 되었고, 20 MHz 변조 신호를 사용한 경우, 1.8 GHz에서 출력 전력 22.24 dBm 이 측정되었다. Wireless local area network(WLAN) 802.11n 변조 신호를 이용하여 2.4 GHz 및 5.0 GHz 대역을 측정하였으며, 출력 전력은 20.58 dBm 및 17.7 dBm으로 확인되었다.

Keywords

HOJBC0_2019_v23n7_807_f0001.png 이미지

Fig. 1 Input matching network structure.

HOJBC0_2019_v23n7_807_f0002.png 이미지

Fig. 2 Input transformer structure (a) low-band and (b) high-band.

HOJBC0_2019_v23n7_807_f0003.png 이미지

Fig. 3 Simulation results of normalized input matching network impedance.

HOJBC0_2019_v23n7_807_f0004.png 이미지

Fig. 4 Simulation results of harmonic distortion output load voltage waveform at 0.9 GHz.

HOJBC0_2019_v23n7_807_f0005.png 이미지

Fig. 5 Simulation results of each frequency load-pull impedance.

HOJBC0_2019_v23n7_807_f0006.png 이미지

Fig. 6 Output transformer structure (a) low-band and (b) high-band.

HOJBC0_2019_v23n7_807_f0007.png 이미지

Fig. 7 Simulation results of output matching network impedance transformation.

HOJBC0_2019_v23n7_807_f0008.png 이미지

Fig. 8 Schematic of the quad-band power amplifier.

HOJBC0_2019_v23n7_807_f0009.png 이미지

Fig. 9 Simulation results of S-parameters.

HOJBC0_2019_v23n7_807_f0010.png 이미지

Fig. 10 Quad-band power amplifier chip photograph.

HOJBC0_2019_v23n7_807_f0011.png 이미지

Fig. 11 Measured S-parameters.

HOJBC0_2019_v23n7_807_f0012.png 이미지

Fig. 12 Measured (a) gain, PAE and ACPR and (b) constellation of the quad-band PA for LTE 10 MHz modulated signals at 0.95 GHz.

HOJBC0_2019_v23n7_807_f0013.png 이미지

Fig. 13 Measured (a) gain, PAE and ACPR, (b) LTE 10 MHz constellation and (c) LTE 20 MHz constellation of the quad-band PA for modulated signals at 1.8 GHz.

HOJBC0_2019_v23n7_807_f0014.png 이미지

Fig. 15 Measured (a) gain, PAE and EVM and (b) constellation of the PA for WCDMA modulated signals at 2.4 GHz.

HOJBC0_2019_v23n7_807_f0015.png 이미지

Fig. 14 Measured (a) gain, PAE and EVM and (b) constellation of the PA for WLAN 802.11n modulated signals at 2.4 GHz.

Table. 1 Comparison of CMOS Multi-band PAs

HOJBC0_2019_v23n7_807_t0001.png 이미지

References

  1. H. Yu, "Efficient Modulation for the Last Symbol in OFDM Systems," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 3, pp. 513-519, Mar. 2018. https://doi.org/10.6109/JKIICE.2018.22.3.513
  2. I.-C. Ko, and H.-C. Park, "Channel Capacity Maximization in a Distorted 2x2 LOS MIMO Link," Journal of Information and Communication Convergence Engineering, vol. 16, no. 2, pp. 72-77, Jun. 2018. https://doi.org/10.6109/JICCE.2018.16.2.72
  3. P. A. Dal Fabbro, and M. Kayal, Linear CMOS RF Power Amplifier for Wireless Applications, Germany, Berlin:Springer, 2010.
  4. J. Park, C. Lee, and C. Park, "A Quad-band CMOS Linear Power Amplifier for EDGE Applications using an Anti-phase Method to Enhance its Linearity," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 64, no. 4, pp. 765-776, Apr. 2017. https://doi.org/10.1109/TCSI.2016.2620559
  5. F. G. S. Silva, R. N. de Lima, R. C. S. Freire, and C. Plett, "A Switchless multiband impedance matching technique based on multiresonant circuits," IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 60, no. 99, Jul. 2013.
  6. B. Kim, D.-H. Lee, S. Hong, and M. Park, "A multi-band CMOS power amplifier using reconfigurable adaptive power cell technique," IEEE Microwave and Wireless Components Letters, vol. 26, no. 8, pp. 616-618, Aug. 2016. https://doi.org/10.1109/LMWC.2016.2585569
  7. C. D. Presti, F. Carrara, A. Scuderi, P. M. Asbeck, and G. Palmisano, "A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control," IEEE Journal Solid-State Circuits, vol. 44, no. 7, pp. 1883-1896, Jul. 2009. https://doi.org/10.1109/JSSC.2009.2020226
  8. K. Kim, J. Ko, S. Lee, and S. Nam, "A two-stage broadband fully integrated CMOS linear power amplifier for LTE applications," IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 63, no. 6, pp. 533-537, Jun. 2016. https://doi.org/10.1109/TCSII.2016.2530418
  9. K. Kim, D-H. Lee, and S. Hong, "A dual-mode multi-band second harmonic controlled SOI LDMOS power amplifier," IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 466-468, Jul. 2015. https://doi.org/10.1109/LMWC.2015.2429115
  10. S. Hu, S. Kousai, and H. Wang, "A broadband mixed-signal CMOS power amplifier with a hybrid class-G doherty efficiency enhancement technique," IEEE Journal Solid- State Circuits, vol. 51, no. 3, pp. 598-613, Mar. 2016. https://doi.org/10.1109/JSSC.2015.2508023
  11. J. Ko, and S. Nam, "A two-stage S-/X -band cmos power amplifier for high-resolution radar transceivers," IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 606-608, Jul. 2018. https://doi.org/10.1109/LMWC.2018.2839646
  12. J. S. Park, S. Hu, Y. Wang, and H. Wang, "A highly linear dual-band mixed-mode polar power amplifier in CMOS with an ultra-compact output network," IEEE Journal Solid-State Circuits, vol. 51, no. 8, pp. 1756-1770, Aug. 2016. https://doi.org/10.1109/JSSC.2016.2582899
  13. C. Lee, and C. Park, "Design Methodology for a Switching- Mode RF CMOS Power Amplifier with an Output Transformer," International Journal of Microwave and Wireless Technologies, vol. 8, no. 3, pp. 471-477, May. 2016. https://doi.org/10.1017/S1759078715001415
  14. F. Carrara, C. D. Presti, F. Pappalardo, and G. Palmisano, "A 2.4-GHz 24-dBm SOI CMOS power amplifier with fully integrated reconfigurable output matching network," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 9, pp. 2122-2130, Sep. 2009. https://doi.org/10.1109/TMTT.2009.2027078
  15. H. Wang, C. Sideris, and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE Journal Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010. https://doi.org/10.1109/JSSC.2010.2077171
  16. C. Park, J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 782-792, Apr. 2008. https://doi.org/10.1109/TMTT.2008.918152
  17. Q. Cai, W. Che, K. Ma, and L. Gu, "A concurrent dual-band high-efficiency power amplifier with a novel harmonic control network," IEEE Microwave and Wireless Components Letters, vol. 28, no. 10, pp. 918-920, Oct. 2018. https://doi.org/10.1109/LMWC.2018.2860798
  18. Y. Lee, and S. Hong, "A dual-power-mode output matching network for digitally modulated CMOS power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1570-1579, Apr. 2013. https://doi.org/10.1109/TMTT.2013.2246525