Fig. 1. Example RGG graph
Fig. 2. Example RRG graph
Fig. 3. Example WS graph
Fig. 4. Graphs with specific properties
Fig. 5. Centralities of graphs with specific properties
Fig. 6. Calculation of distance using centralities
Fig. 7. Flowchart for calculating distances
Fig. 8. Distances of experiment
Table 1. distance(GPS, GER)
Table 2. distance(GPS, GBA)
Table 3. distance(GER, GBA)
Table 4. Random graph model sets
Table 5. distance(
Table 6. distance(
Table 7. distance(
Table 8. distance (
Table 9. distance (
Table 10. distance (
Table 11. distance (
Table 12. distance (
Table 13. distance (
Table 14. distance (
Table 15. distance (
Table 16. distance (
References
- West, Douglas Brent. Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice hall, 2001.
- Bollobas, Bela. "Random graphs." Modern graph theory. Springer, New York, NY, 1998. 215-252.
- Sanfeliu, Alberto, and King-Sun Fu. "A distance measure between attributed relational graphs for pattern recognition." IEEE transactions on systems, man, and cybernetics 3 (1983): 353-362. https://doi.org/10.1109/TSMC.1983.6313167
- Akoglu, Leman, Hanghang Tong, and Danai Koutra. "Graph based anomaly detection and description: a survey." Data mining and knowledge discovery 29.3 (2015): 626-688. https://doi.org/10.1007/s10618-014-0365-y
- Pignolet, Yvonne Anne, et al. "The many faces of graph dynamics." Journal of Statistical Mechanics: Theory and Experiment 2017.6 (2017): 063401. https://doi.org/10.1088/1742-5468/aa71ce
- Tae-Soo Cho, Chi-Geun Han, and Sang-Hoon Lee. "Measurement of graphs similarity using graph centralities." JKCSI 23.12 (2018): 57-64.
- Freeman, Linton C. "A set of measures of centrality based on betweenness." Sociometry (1977): 35-41.
- Okamoto, Kazuya, Wei Chen, and Xiang-Yang Li. "Ranking of closeness centrality for large-scale social networks." International Workshop on Frontiers in Algorithmics. Springer, Berlin, Heidelberg, 2008.
- Freeman, Linton C. "Centrality in social networks conceptual clarification." Social networks 1.3 (1978): 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
- Bonacich, Phillip. "Some unique properties of eigenvector centrality." Social networks 29.4 (2007): 555-564. https://doi.org/10.1016/j.socnet.2007.04.002
- Gilbert, Edgar N. "Random graphs." The Annals of Mathematical Statistics 30.4 (1959): 1141-1144. https://doi.org/10.1214/aoms/1177706098
- ERDdS, P., and A. R&WI. "On random graphs I." Publ. Math. Debrecen 6 (1959): 290-297.
- Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world'networks." nature 393.6684 (1998): 440. https://doi.org/10.1038/30918
- Bianconi, Ginestra, and A-L. Barabasi. "Competition and multiscaling in evolving networks." EPL (Europhysics Letters) 54.4 (2001): 436. https://doi.org/10.1209/epl/i2001-00260-6
- Barabasi, Albert-Laszlo, and Reka Albert. "Emergence of scaling in random networks." science 286.5439 (1999): 509-512. https://doi.org/10.1126/science.286.5439.509
- Penrose, Mathew D. "On k-connectivity for a geometric random graph." Random Structures & Algorithms 15.2 (1999): 145-164 https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<145::AID-RSA2>3.0.CO;2-G