DOI QR코드

DOI QR Code

Optimal design for the reinforced concrete circular isolated footings

  • Received : 2019.01.25
  • Accepted : 2019.05.31
  • Published : 2019.07.25

Abstract

In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Keywords

Acknowledgement

Supported by : Autonomous University of Coahuila

References

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099.
  2. ACI 318S-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
  3. Aguilera-Mancilla, G., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019a), "Modeling for the strap combined footings Part I: Optimal dimensioning", Steel Compos. Struct., 32(2), 97-108. http://dx.doi.org/10.12989/scs.2019.30.2.097.
  4. Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Scholarly Scientific Res. Innovation, 7(4), 193-200.
  5. Al-Ansari, M.S. (2014), "Cost of reinforced concrete paraboloid shell footing", J. Struct. Analysis Design, 1(3), 111-119.
  6. Aschheim, M., Hernandez-Montes, E. and Gil-Martin, L.M. (2008), "Design of optimally reinforced RC beam, column, and wall sections", J. Struct. Eng., 134(2), 231-239. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(231).
  7. Awad Z.K. (2013), "Optimization of a sandwich beam design: analytical and numerical solutions", Struct. Eng. Mech., 48(1), 93-102. http://dx.doi.org/10.12989/sem.2013.48.1.093.
  8. Bhalchandra, S.A. and Adsul, P.K. (2012), "Cost optimization of doubly reinforced rectangular beam section", J. Modern Eng. Res., 2(5), 3939-3942.
  9. Bordignon, R. and Kripka, M. (2012), "Optimum design of reinforced concrete columns subjected to uniaxial flexural compression", Comp. Concrete, 9(5), 327-340. http://dx.doi.org/10.12989/cac.2012.9.5.327.
  10. Errouane, H., Deghoul, N., Sereir, Z. and Chateauneuf, A. (2017), "Probability analysis of optimal design for fatigue crack of aluminium plate repaired with bonded composite patch", Struct. Eng. Mech., 61(3), 325-334. http://dx.doi.org/10.12989/sem.2017.61.3.325.
  11. Fleith de Medeiros, G. and Kripka, M. (2013), "Structural optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings", Comp. Concrete, 11(3), 253-270. http://dx.doi.org/10.12989/cac.2013.11.3.253.
  12. Gao, Q., Yang, J.D. and Qiao, J.D. (2017), "A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., 64(5), 567-577. http://dx.doi.org/10.12989/sem.2017.64.5.567.
  13. Gharehbaghi, S. (2018). "Damage controlled optimum seismic design of reinforced concrete framed structures", Struct. Eng. Mech., 65(1), 53-68. http://dx.doi.org/10.12989/sem.2018.65.1.053.
  14. Hwang, Y., Jin, S.S., Jung, H.Y., Kim, S., Lee, J.J. and Jung, H.J. (2018), "Experimental validation of FE model updating based on multi-objective Optimization using the surrogate model", Struct. Eng. Mech., 65(2), 173-181. http://dx.doi.org/10.12989/sem.2018.65.2.173.
  15. Kao, CH-S. and Yeh, I-CH. (2014a), "Optimal design of reinforced concrete plane frames using artificial neural networks", Comp. Concrete, 14(4), 445-462. http://dx.doi.org/10.12989/cac.2014.14.4.445.
  16. Kao, CH-S. and Yeh, I-CH. (2014b), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., 52(4), 739-753. http://dx.doi.org/10.12989/sem.2014.52.4.739.
  17. Kaveh, A. and Bijari, S. (2018), "Simultaneous analysis, design and Optimization of trusses via force method", Struct. Eng. Mech., 65(3), 233-241. http://dx.doi.org/10.12989/sem.2018.65.3.233.
  18. Kaveh, A. and Mahdavi, V.R. (2016), "Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis", Struct. Eng. Mech., 61(3), 1093-1117. http://dx.doi.org/10.12989/sem.2016.60.6.1093.
  19. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. http://dx.doi.org/10.12989/sem.2012.42.6.783.
  20. Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 47(2), 227-245. http://dx.doi.org/10.12989/sem.2013.47.2.227.
  21. Khajehzadeh, M., Taha M.R. and Eslami, M. (2014), "Multi-objective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., 50(3), 257-273. http://dx.doi.org/10.12989/sem.2014.50.3.257.
  22. Kripka, M. and Chamberlain Pravia, Z.M. (2013), "Cold-formed steel channel columns optimization with simulated annealing method", Struct. Eng. Mech., 48(3), 383-394. http://dx.doi.org/10.12989/sem.2013.48.3.383.
  23. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017a), "A mathematical model for dimensioning of square isolated footings using optimization techniques: general case", J. Innov. Comput. I., 13(1), 67-74.
  24. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017b), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/acd.2017.2.2.169.
  25. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017c), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168.
  26. Luevanos-Rojas, A. (2012), "A mathematical model for the dimensioning of circular footings", Far East J. Math. Sci., 71(2), 357-367.
  27. Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. http://dx.doi.org/10.12989/sem.2014.52.4.767.
  28. Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyna, 81(188), 199-208. http://dx.doi.org/10.15446/dyna.v81n188.41800.
  29. Luevanos-Rojas, A. (2015), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. http://dx.doi.org/10.12989/sem.2015.56.5.745.
  30. Luevanos-Rojas, A. (2016a), "Numerical experimentation for the optimal design of reinforced rectangular concrete beams for singly reinforced sections", Dyna, 83(196), 134-142. http://dx.doi.org/10.15446/dyna.v83n196.48031.
  31. Luevanos-Rojas, A. (2016b), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna, 83(196), 149-158. http://dx.doi.org/10.15446/dyna.v83n196.51056.
  32. Luevanos-Rojas, A. (2016c), "Un nuevo modelo para diseno de zapatas combinadas rectangulares de lindero con dos lados opuestos restringidos", Revista Alconpat, 6(2), 172-187. http://dx.doi.org/10.21041/ra.v6i2.137.
  33. Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez, M.A. (2013), "Design of isolated footings of rectangular form using a new model", Int. J. Innov. Comput. I., 9(10), 4001-4022.
  34. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. http://dx.doi.org/10.15446/ing.investig.v37n2.61447.
  35. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Coupled Syst. Mech., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417.
  36. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018a), "Optimizacion de vigas de concreto reforzado para secciones rectangulares con experimentos numericos", Computacion y Sistemas, 22(2), 599-606. https://doi.org/10.13053/CyS-22-2-2542.
  37. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018b), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., 14(1), 51-60. https://doi.org/10.12989/gae.2018.14.1.051.
  38. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018c), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061.
  39. Nascimbene, R. (2013), "Analysis and optimal design of fiber-reinforced composite structures: sail against the wind", Wind Struct., 16(6), 541-560. http://dx.doi.org/10.12989/was.2013.16.6.541.
  40. Ozturk, H.T. and Durmus, A. (2013), "Optimum cost design of RC columns using artificial bee colony algorithm", Struct. Eng. Mech., 45(5), 643-654. http://dx.doi.org/10.12989/sem.2013.45.5.643.
  41. Rizwan, M., Alam, B., Rehman, F.U., Masud, N., Shahzada, K., Masud, T. (2012), "Cost Optimization of Combined Footings Using Modified Complex Method of Box", J. Adv. Struct. Geotech. Eng., 1(1), 24-28.
  42. Shayanfar, M.A., Ashoory, M., Bakhshpoori, T. and Farhadi, B. (2013), "Optimization of modal load pattern for pushover analysis of building structures", Struct. Eng. Mech., 47(1), 119-129. http://dx.doi.org/10.12989/sem.2013.47.1.119.
  43. Tiliouine, B. and Fedghouche, F. (2014), "Cost Optimization of reinforced high strength concrete T-sections in flexure", Struct. Eng. Mech., 49(1), 65-80. http://dx.doi.org/10.12989/sem.2014.49.1.065.
  44. Velazquez-Santillan, F., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2018), "Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings", Adv. Comput. Des., 3(1), 49-69. http://dx.doi.org/10.12989/acd.2018.3.1.049.
  45. Wang, Y., (2009), "Reliability-based economic design optimization of spread foundations", J. Geotech. Geoenviron., 135(7), 954-959. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000013.
  46. Wang, Y., Kulhawy, F.H. (2008), "Economic design optimization of foundation", J. Geotech. Geoenviron., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097).
  47. Yanez-Palafox, J.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019b), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., 32(2), 109-121. http://dx.doi.org/10.12989/scs.2019.30.2.109.
  48. Yousif, S.T., ALsaffar, I.S., Ahmed, S.M. (2010), "Optimum Design of Singly and Doubly Reinforced Concrete Rectangular Beam Sections: Artificial Neural Networks Application", Iraqi Journal of Civil Engineering, 6(3), 1-19.
  49. Zhang, H.Z., Liu, X., Yi, W.J. and Deng, Y.H. (2018), "Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural Optimization methods", Struct. Eng. Mech., 65(3), 303-314. http://dx.doi.org/10.12989/sem.2018.65.3.303.

Cited by

  1. Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2019, https://doi.org/10.12989/csm.2019.8.6.523
  2. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.355