DOI QR코드

DOI QR Code

Analysis of Epistemic Thinking in Middle School Students in an Argument-Based Inquiry(ABI) Science Class

논의기반 탐구(ABI) 과학수업에서 나타나는 중학생들의 인식론적 사고 분석

  • Received : 2019.01.30
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

The purpose of this study is to examine epistemic thinking in middle school students in an argument-based inquiry science class. Participants of the study were 93 9th grade students from four classes of a middle school in a metropolitan city. Observations were made over one semester during which argument-based inquiry lessons on five subjects were conducted. Data was collected from argument-based inquiry activity worksheets and student questionnaires. After analysis of epistemic thinking in the written reflections, students were found to have the highest frequency of epistemic metacognitive skills, followed by epistemic cognition, epistemic metacognitive experience, and epistemic metacognitive knowledge. While investigating the effects of an argument-based inquiry science class on student epistemic thinking and after analysis of the reflections written for the first ABI activity and the fifth ABI activity, we found that all of the sub-elements of epistemic thinking have increased. The rate of growth for epistemic cognition is greatest, followed by epistemic metacognitive knowledge and epistemic metacognitive skills. Assessed for epistemic thinking, the level of epistemic thinking improved over the course of the argument-based inquiry science class. The results of the survey show that students actively participating and being recognized for their active participation in the argument-based inquiry science class are helpful in understanding scientific knowledge. Therefore, an argument-based inquiry science class is a teaching and learning program that allows students to understand and experience the epistemic nature of scientific knowledge and its construction through collaboration and agreement.

이 연구에서는 논의기반 탐구 과학수업에서 나타나는 중학생들의 인식론적 사고를 알아보고자 하였다. 이를 위하여 광역시의 중학교 3학년 4개 학급 학생 93명을 대상으로 한 학기 동안 5개 주제의 논의 기반 탐구 과학수업을 실시하였다. 논의기반 탐구 과학수업에서 나타나는 학생들의 인식론적 사고 특징을 알아보기 위해 논의기반 탐구 과학수업 활동의 마지막 단계에서 작성하는 반성 글쓰기를 주제 1과 주제 5에 대해서 분석하였다. 반성 글쓰기에서 나타나는 인식론적 사고의 하위 요소의 빈도수 분석에서 학생들은 인식론적 메타인지 기능의 빈도수가 가장 높았고, 인식론적 인지, 인식론적 메타인지 경험, 인식론적 메타인지 지식의 순으로 나타났고 주제 1에 비해서 주제 5에 대한 인식론적 사고의 하위 요소의 빈도수는 모두 증가하였으며 증가율은 인식론적 메타인지 경험이 가장 컸고, 인식론적 인지, 인식론적 메타인지 지식, 인식론적 메타인지 기능의 순으로 나타났다. 또한 인식론적 사고의 다양성 수준의 분석에서 학생들이 논의기반 탐구 과학 수업을 경험하면서 인식론적 사고의 다양성 수준이 향상되었다. 논의기반 탐구 과학수업이 학생들의 인식론적 사고에 미친 영향에 대한 학생 인식을 알아보기 위해서 설문조사에서 학생들은 이 활동이 과학 지식 이해에 도움이 된다고 인식하였다. 학생들은 논의기반 탐구 과학수업의 단계 중 실험 설계 및 수행과 관찰 단계에 대해서 흥미를 크게 느끼고 어려움을 적게 느꼈으며, 직접적인 경험을 통해서 과학지식을 쉽게 이해하고 오랫동안 기억하는데 도움이 된다고 인식하였다. 따라서 논의기반 탐구 과학수업은 학생들의 인식론적 사고의 발달을 유도하고, 논의를 통해 학생들이 지식의 정당화 과정에 참여하도록 하며, 구성원과의 합의에 의해서 과학 지식이 구성된다는 과학지식의 인식론적 본성을 이해하고 경험하도록 하는 교수학습 프로그램이라고 볼 수 있다.

Keywords

GHGOBX_2019_v39n3_337_f0001.png 이미지

Figure 1. Organization of thinking

GHGOBX_2019_v39n3_337_f0002.png 이미지

Figure 2. Epistemic Thinking in the reflections written for the first ABI activity and the fifth ABI activity

GHGOBX_2019_v39n3_337_f0003.png 이미지

Figure 3. Helpful ABI activity stages for understanding science knowledge

GHGOBX_2019_v39n3_337_f0004.png 이미지

Figure 4. Interesting ABI activity stages for active participation

GHGOBX_2019_v39n3_337_f0005.png 이미지

Figure 5. Difficult ABI activity stages for active participation

Table 1. Argument-Based Inquiry step applying students’ claim modifications

GHGOBX_2019_v39n3_337_t0001.png 이미지

Table 2. Topics of Argument-Based Inquiry(ABI) activities

GHGOBX_2019_v39n3_337_t0002.png 이미지

Table 3. Epistemic thinking in the written reflections analysis framework

GHGOBX_2019_v39n3_337_t0003.png 이미지

Table 4. Epistemic Thinking in the reflections written for the first ABI activity and the fifth ABI activity

GHGOBX_2019_v39n3_337_t0004.png 이미지

Table 5. Epistemic Thinking variety level in the reflections written for the first ABI activity and the fifth ABI activity

GHGOBX_2019_v39n3_337_t0005.png 이미지

Table 6. Changes through the argument-based inquiry science class

GHGOBX_2019_v39n3_337_t0006.png 이미지

References

  1. Barzilai, S., & Zohar, A. (2014). Reconsidering personal epistemology as metacognition: A multifaceted approach to the analysis of epistemic thinking. Educational Psychologist, 49(1), 13-35. https://doi.org/10.1080/00461520.2013.863265
  2. Barzilai, S., & Zohar, A. (2016). Epistemic (meta) cognition: Ways of thinking about knowledge and knowing. In Greene, J. A., Sandoval, W. A., & Braten, I. (Eds.), Handbook of epistemic cognition(pp. 409-424). New York: Routledge.
  3. Chinn, C. A., & Buckland, L. A. (2012). Model-based instruction: Fostering change in evolutionary conceptions and in epistemic practices. In K. S. Rosengren, E. M. Evans, S. K. Brem, & G. M. Sinatra(Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution, (pp.211-232). Oxford, UK: Oxford University Press.
  4. Council of Chief State School Officers. (2010). Common Core State Standards for English language arts and literacy in history/social studies, science, and technical subjects. Retrieved, from http://www.corestandards.org/assets/ CCSSI_ELA%20Standards.pdf
  5. Efklides, A. (2002). The systemic nature of metacognitive experiences. In P. Chambres, M. Izaute, & P.-J. Marescaux (Eds.), Metacognition: Process, Function and Use (pp. 19-34). Norwell, MA: Kluwer.
  6. Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process?. Educational Research Review, 1(1), 3-14. https://doi.org/10.1016/j.edurev.2005.11.001
  7. Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13(4), 277. https://doi.org/10.1027/1016-9040.13.4.277
  8. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554-567. https://doi.org/10.1002/sce.1023
  9. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906. https://doi.org/10.1037/0003-066X.34.10.906
  10. Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207-245. https://doi.org/10.1080/07370008.2012.689383
  11. Goldman, S. R., Lawless, K. A., Gomez, K. W., Braasch, J., McLeod, S., & Manning, F.(2010). Literacy in the digital world: Comprehending and learning from multiple sources. In M. G. McKeown & L. Kucan (Eds.), Bringing reading research to life (pp. 257-284). New York, NY: Guilford.
  12. Gray, D. E. (2007). Facilitating management learning: Developing critical reflection through reflective tools. Management learning, 38(5), 495-517. https://doi.org/10.1177/1350507607083204
  13. Hand, B., Meier, L. N., Staker, J., & Bintz, J. (2006). When science and literacy meet in the secondary learning space: Implementing the science writing heuristic (SWH). University of Iowa.
  14. Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 111-127. https://doi.org/10.1207/s15326985ep4102_4
  15. Hofer, B. K. (2005). The legacy and the challenges: Paul Pintrich's contributions to personal epistemology research. Educational Psychologist, 40(2), 95-105. https://doi.org/10.1207/s15326985ep4002_4
  16. Hullfish, H. G., & Smith, P. G. (1961). Reflective thinking: The method of education. New York: Dodd, Mead & Company.
  17. Jang, K., Nam, J., & Choi, A. (2012). The Effects of Argument- Based Inquiry Using the Science Writing Heuristic (SWH) Approach on Argument Structure in Students' Writing. Journal of the Korean Association for Science Education, 32(7), 1099-1108. https://doi.org/10.14697/jkase.2012.32.7.1099
  18. Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084. https://doi.org/10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I
  19. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  20. Leu, D. J., Kinzer, C. K., Coiro, J., Castek, J., & Henry, L. A. (2013). New literacies: A dual level theory of the changing nature of literacy, instruction, and assessment. In N. Unrau & D. Alvermann(Eds.), Theoretical models and process of reading(pp. 1150-1181). Newark, DE: International Reading Association.
  21. Lee, S., Bak, D., & Nam, J. (2015). Impact of Peer Assessment Activities on High School Students Argumentation in Argument-Based Inquiry. Journal of The Korean Association For Science Education, 35(3), 353-361. https://doi.org/10.14697/jkase.2015.35.3.0353
  22. Ministry Of Education. (2015). 2015 Revised national curriculum. MOE, Notice No. 2015-74.
  23. Muis, K. R. (2007). The role of epistemic beliefs in self-regulated learning. Educational Psychologist, 42(3), 173-190. https://doi.org/10.1080/00461520701416306
  24. Muis, K. R., Trevors, G., & Chevrier, M. (2016). Epistemic climate for epistemic change. In Greene, J. A., Sandoval, W. A., & Braten, I. (Eds.), Handbook of epistemic cognition(pp. 331-359). New York: Routledge.
  25. Nam, J., Kwak, K., Jang, K., & Hand, B. (2008). The implementation of argumentation using Science Writing Heuristic (SWH) in Middle School Science. Journal of the Korean Association for Science Education, 28(8), 922-936.
  26. National Education Association. (2014). Preparing 21st century students for a global society: An educators guide to the "Four Cs." Washington, DC: National Education Association.
  27. NGSS Lead States. (2013). Next Generation Science Standards: For states, by states: Vol. 1. The standards. Washington, DC: National Academies Press.
  28. Prain, V. (2006). Learning from writing in secondary science: Some theoretical and practical implications. International Journal of Science Education, 28(2-3), 179-201. https://doi.org/10.1080/09500690500336643
  29. Richter, T., & Schmid, S. (2010). Epistemological beliefs and epistemic strategies in self-regulated learning. Metacognition and Learning, 5(1), 47-65. https://doi.org/10.1007/s11409-009-9038-4
  30. Richter, T. (2015). Validation and comprehension of text information: Two sides of the same coin. Discourse Processes, 52(5-6), 337-355. https://doi.org/10.1080/0163853X.2015.1025665
  31. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. https://doi.org/10.1002/sce.20276
  32. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  33. Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational psychology review, 7(4), 351-371. https://doi.org/10.1007/BF02212307
  34. Schraw, G., & Robinson, D. H. (2011). Conceptualizing and assessing higher order thinking skills. In G. Schraw & D. Robinson (Eds.), Assessment of higher order thinking skills (pp.1-15). Greenwich, CT: Information Age Publishers.
  35. Swartz, R. J., Costa, A. L., Beyer, B. K., Reagan, R., & Kallick, B. (2010). Thinking-Based Learning: Promoting Quality Student Achievement in the 21st Century. New York: Teachers College Press.

Cited by

  1. 논의기반 탐구활동이 초등학생의 과학 글쓰기에 나타나는 주장과 증거에 미치는 영향 vol.64, pp.6, 2019, https://doi.org/10.5012/jkcs.2020.64.6.389
  2. 지구과학 예비교사가 설계한 수업내용의 논증구조에 나타난 반박 분석 vol.13, pp.3, 2019, https://doi.org/10.15523/jksese.2020.13.3.238
  3. 2015개정 과학과 선택과목 수업 및 평가에 대한 교사들의 인식 탐색 vol.41, pp.3, 2019, https://doi.org/10.14697/jkase.2021.41.3.183
  4. 예비 지구과학 교사의 교수학습지도안에 나타난 논증 수준 분석 vol.14, pp.2, 2021, https://doi.org/10.15523/jksese.2021.14.2.123