
Journal of the Korea Academia-Industrial
cooperation Society
Vol. 20, No. 7 pp. 45-51, 2019

https://doi.org/10.5762/KAIS.2019.20.7.45
ISSN 1975-4701 / eISSN 2288-4688

45

RFJ: A Reliable and Fast Journaling Mechanism

Sejin Park
Department of Computer Engineering, Keimyung University

RFJ: 신뢰적 고성능 데이터 버퍼 저널링 기법

박세진
계명대학교 컴퓨터공학전공

Abstract Modern file systems have journaling mechanism to maintain their stored state consistently even
under unexpected system crashes or disasters. However, the journaling makes I/O throughput lower. This
performance degradation comes from the ordering mechanism between the data buffer and metadata
buffer and two-staged buffer writing. Especially, if the data buffer and metadata buffer are journalled
at the same time, then it incurs significant performance degradation due to the two-staged writing. That
shows the trade-off relation-ship between I/O performance and system reliability. In this paper, we
propose RFJ: a reliable and fast jour-naling mechanism to deal with this trade-off relationship. We
propose an ordering enforced writeback journaling mode and selective journaling mechanism. The
Ordering enforced writeback journaling mode achieves low I/O latency and the selective journaling
mechanism achieves high reliability. The experimental result shows that the performance of RFJ is
almost 5x faster than the journal mode of Ext3 file system but it still supports the same reliability with
the journal mode.

요 약 현대 파일 시스템은 예기치 못한 시스템 크래시 또는 재난 상황에서도 데이터의 일관성 유지를 위해 저널링
메커니즘을 유지한다. 그러나 저널링은 I/O 처리율을 떨어뜨리는 문제가 있다. 이 성능 저하 문제는 데이터 버퍼와 메타
데이터 버퍼간의 오더링 메커니즘과 2단계 버퍼쓰기에서 기인하는데. 특히, 만약 데이터 버퍼와 메타데이터 버퍼가 동시
에 저널링이 되면, 2단계 쓰기 때문에 심각한 성능저하가 발생하며, 이는 I/O 성능과 시스템 신뢰도 간의 Trade-off
관계가 있음을 나타낸다. 본 논문은 RFJ 라는 신뢰성 있는 고속 저널링 기법을 제안한다. 이 기법은 Ordering
enforced writeback 저널링 모드와 selective journaling 메커니즘을 도입해서 높은 신뢰도와 동시에 고성능 I/O 가
가능하게 한다. 본 논문에서 제안한 기법의 실험 결과 기존 Ext3 저널링 모드 대비 약 5배 이상 빠른 I/O 처리량을
지원하면서 동시에 Ext3 저널링과 동일한 수준의 신뢰성을 나타는 것을 확인 할 수 있었다.

Keywords : Journaling, Filesystem, Reliablility, Ordering, Data

This research was supported by the Keimyung University Research Grant of 2018.
*Corresponding Author : Sejin Park(Keimyung Univ.)
email: baksejin@kmu.ac.kr
Received April 8, 2019 Revised May 15, 2019
Accepted July 5 ,2019 Published July 31,2019

1. Introduction

Unexpected crashes like power outage or
hardware failure can make file system state
inconsistently, which makes recovery harder.

Journaling mechanism enables fast file system
recovery even when the system is failed. When a
new data is written to file system, a log for the
write operation is committed in journal area
before the data is stored to the file system. This

한국산학기술학회논문지 제20권 제7호, 2019

46

Fig. 2. I/O throughput of fileserver workload in
the Filebench comparing with various
journaling modes under Ext3 file system.

Fig. 1. Journaling mechanism. When a new write
operation is issued at T1, then the data will
be committed to the journal area at T2. After
then, the data will be finally checkpointed to
the file system at T3.

committed log is the key for file system recovery
because the data will not be physically stored
into the file system before the log is committed.
Because of the reliability support, modern file
systems include journaling mechanism to maintain
their state consistently [1, 2, 3, 4]. Figure 1 shows
the basic operation of journaling mechanism.

Although the journaling mechanism serves
reliability in unexpected crash, there is
significant performance degradation. The data
block will be written twice - to the journal area
and then to the file system. In order to mitigate
this problem, many existing file systems support
various journaling modes. For example, the Ext3
file system supports three journaling modes. The
journal mode supports that all data blocks and
metadata blocks are committed into the journal
area prior to being written into the file system.
This is the most reliable journaling mode
because it can recover data blocks and metadata
blocks simultaneously. However, this is the
slowest mode as well. Thus under data reliability
is seriously important situation, the system
administrator sets journal mode. In the ordered
mode, only metadata blocks are committed to
the journal area but the written order is forced.
The data blocks are directly written to the file
system prior to metadata blocks being committed
to the journal area. Although it only commits
metadata blocks, the ordering control serves
considerable recovery chance and it gives

moderate write overhead. This is the default
journaling mode for the file system. The last
journaling mode is writeback. It only commits
metadata blocks like ordered mode but there is
no ordering control. Therefore, it has low chance
to recover data but this is the fastest journaling
mode. As explained above, there are trade-off
relationship between reliability and write latency.

In this paper, we propose a reliable and fast
journaling mechanism named RFJ to solve the
trade-off relationship. The RFJ not only supports
high reliability of the journal mode but also
achieves low write latency of the ordered mode.

Contributions of this paper are as follows.
1. Detailed explanation of the trade-off

relationship between file system reliability
and performance under various journaling
modes.

2. A new journaling mode named Ordering
enforced writeback is proposed. It
guarantees the ordering between the
metadata and the data but it works as fast as
writeback mode.

3. A dynamic journaling mode selection
method makes this system as reliable as
journal mode. It only journals overwritten
data blocks.

2. Trade-off between I/O Performance
and Reliability of File System

RFJ: A Reliable and Fast Journaling Mechanism

47

Fig. 3. Ordered mode in the Ext3 file system. (a)
depicts new block write case and (b) depicts
existing block overwrite

Fig. 4. Journal mode in the Ext3 file system. (a)
depicts new block write case and (b) depicts
existing block overwrite

In this section, we describe the file system
performance and inconsistency for each journaling
modes. As explained in the section 1, there are
three journaling modes in the Ext3 file system.
The relationship among various journaling modes
is trade-off between file system reliability and
I/O performance.

2.1 I/O Throughput
In order to see the performance difference, we

evaluate each journaling mode of Ext3 file
system using Filebench benchmark [5]. The
workload fileserver emulates simple fileserver I/O
activity. This workload performs a sequence of
creates, deletes, appends, reads, writes and
attribute operations on a directory tree. 50
threads are used by default. The evaluation is
conducted on Intel Xeon E5620 2.4 GHz x 8
cores with 16 GB of RAM and the hard disk drive
is 7,200 RPM with SATA interface. Figure 2 shows
the result of the evaluation. The journal mode
shows the worst performance for these two
workloads since the journal mode journals not
only metadata blocks but also data blocks. This
causes doubled write for all write operation. In

contrast, the ordered and writeback modes show
much better performance because they journal
only metadata blocks. Furthermore, the writeback
mode does not enforce the ordering control.
Thus it shows the best performance. Note that
metadata size is much smaller then data blocks.
However, the reliability of each journaling mode
is also different.

2.2 Reliability of Writeback mode
Although the writeback mode shows best

performance, it has the lowest reliability among
all journaling modes. Though it journals the
metadata into the journal area, there is no
ordering control in this mode. Therefore, system
crash can cause file system inconsistency when
the data block has not been written. In this
mode, when the file system recovery tool such as
fsck[6] begins to recover, the metadata in the
journal area does not guarantee anything. At
most, the tool can recognize that there can be a
problem when the metadata is remained in the
journal area.

2.3 Reliability of Ordered mode

한국산학기술학회논문지 제20권 제7호, 2019

48

The ordered mode is the default journaling
mode for the Ext3 file system because this mode
supports a nice scheme. In this mode, the data
blocks are directly written to the file system prior
to metadata blocks being committed to the
journal area. That is, the metadata block cannot
be committed to the journal area without data
blocks writing. This enforced ordering control
efficiently guarantees file system consistency in
many cases. Figure 3 shows the operation
sequence of ordered mode. In the case of new
block write (Figure 3-(a)), file system can always
be consistent. Though written data block can be
lost, the file system always maintains consistent
state. Note that, guaranteeing file system
consistency is not guaranteeing data block
recovery. However the case of block overwrite
(Figure 3-(b)), the file system can be remained
inconsistent. If system is crashed from time T1 to
T3, then the existing data will be lost. In this
situation, the file system metadata points to the
existing data but there are no such data anymore
due to the overwrite. That is, the metadata – data
connection semantics is invalid.

2.4 Reliability of Journal mode
Figure 4 depicts the journaling operation

sequence for journal mode in the Ext3 file
system. In this mode, all metadata blocks and
data blocks are committed to the journal area
and then checkpointed to the file system.
Therefore, the file system can always be
maintained consistently. Even in the block
overwrite case, the metadata – data connection
semantics is still valid. If the system is crashed
from time T4 to T5 and the metadata block has
not been overwritten and the data block has
been overwritten. In this case, the file system
recovery tool can correct the inconsistency
because there are still metadata and data blocks
in the journal area.

3. Design

In this section we describe some observations
of file access pattern and the current ordering
mechanism. Then, we show the architecture of
the RFJ and we explain a new journaling mode
named ordering enforced writeback mode.

3.1 Observations
In order to see the benefit of selective journaling,

we evaluated real world traces. We classified
each block write operation into two cases: new
block writing and existing block overwriting case.
Figure 5 shows the classification result of real
world traces from several production servers at
Microsoft [7]. Some traces such as BuildServer2
are block overwrite dominant. Because of the
characteristics of building process, there are
many file modifications.

However, most of traces are new block write
dominant. If we apply journal mode to these
workloads, the journaling mechanism will do
unnecessary write operation because the new
block write case can be covered by ordered
mode. That is to say, to maintain file system
consistently, journal committing of data block is
not required for new block write case. Only block
overwrite case requires journal committing of
data block.

We analyzed the ordering mechanism of the
existing file system (Ext3). The ordering is
guaranteed by the journaling daemon such as
kjournald kernel thread. The journaling daemon
forces synchronous I/O request submission to
flush data buffer to the I/O scheduler and waits
for the completion of the request before it
journals metadata. This mechanism always
guarantees the ordering semantic between the
data buffer and the metadata buffer. However,
the ordering operation causes additional
overheads that makes ordered mode slower. The
forced data flushing operation breaks the I/O

RFJ: A Reliable and Fast Journaling Mechanism

49

Fig. 6. Architecture of RFJ

Fig. 5. Classification of write operation on real
world workload

submission optimization of the I/O scheduler.
That is, if we use the kernel’s default buffer
flusher such as pdflush or per-BDI flusher
instead of flushing data buffer directly in the
journaling daemon, then we can achieve higher
performance.

3.2 Architecture
Based on the observations, we propose a new

journaling technique to achieve reliable and fast
journaling. Figure 6 shows the architecture of
RFJ. It consists of Buffer Monitor, Journal Mode
Selector, I/O Completion Checker and I/O
Completion checking list.

The Buffer Monitor marks each buffer’s state.
If current buffer is already existed then the
buffer is marked as overwritten buffer and if it is
newly allocated buffer, then it is marked as new
buffer. If current buffer is marked as a new
buffer, then the buffer entry is inserted to the
I/O completion checking list. The Journal Mode
Selector selects journaling mode based on the
buffer’s state. If the buffer is marked as overwritten,
then it is processed as data journaling mode.
That is the same with the journal mode in the
Ext3 file system. If the buffer is marked as a new
buffer then it is processed as Ordering enforced
writeback mode. The Ordering enforced
writeback mode does not directly flush data
buffer to the disk. The data buffer is flushed by

kernel’s default flusher such as pdflush or
per-BDI flusher. It just waits for the I/O
completion of the data buffer and if the data
buffer is written to the disk, then it begins to
journal the metadata buffer. To do this, the I/O
Completion Checker waits and polls checks the
state of the buffers in the I/O Completion
checking list. If the buffer is successfully written
by the kernel’s default flusher, the state of the
buffer is modified to I/O completed state. Thus,
the I/O completion checker can check the state
of the buffer. Figure 7 depicts detailed operation.

4. Evaluation

4.1 Experimental Environment
We implement proposed method based on the

Ext3 file system. The Ext3 file system uses
Journaling Block Device as a journal area. We
modified this JBD and the journaling daemon.
Experimental environment has 8 cores of Intel
Xeon E5620 2.4 GHz with 8 GB of RAM. We used
Ubuntu 12.04 LTS as operating system that runs
the Linux kernel version 3.5.0.

4.2 Reliability analysis
The RFJ has the same reliability with the

Journal mode of the Ext3 file system. The original

한국산학기술학회논문지 제20권 제7호, 2019

50

Fig. 7. Detailed operation. D means data and M
means metadata. When a new write
operation is issued, the buffer monitor
classifies each buffer (1) and the newly
allocated buffers are inserted to the I/O
Completion checking list.(2). After then, the
journaling daemon wakes up and journals
the already existing buffers (3). At this point,
it cannot journal the metadata buffer since
there are still data buffers that are not
written to the disk. Because there is nothing
to do, the journaling daemon sleeps. Later,
kernel’s buffer flusher flushes the newly
allocated buffers (4) then the buffers in the
checking list are changed to I/O Completed.
When the journaling daemon wakes up, now
it can journal the metadata (5) because of
the data buffers are resided in the FS area.
After that, the checking list is cleared.

Fig. 8. Throughput comparison to the default
journaling modes in the Ext3 File system.
Result of File server workload in the
Filebench.

journal mode journals all data blocks but RFJ
selectively journals data blocks that is
overwritten. For the newly allocated blocks,
ordering control is enough to maintain file
system consistently. In additional, we do not add
or modify data structure for the journaling for
the compatibility with existing recovery tools.

4.3 I/O Throughput
Figure 8 shows the result of Filebench[5]

benchmark. The RFJ shows almost 5 times better
performance than the Journal mode. It also
outperforms the ordered mode. We think that the
Filebench benchmark contains lots of new writes.
If it contains lots of overwrite, the performance
will be lower. However, as we analyzed in section
3.1, this kind of workload is general case.

This shows that we can achieve almost the
same I/O throughput with the writeback mode
but we can achieve the reliability of journal
mode at the same time.

5. Related Works

Modern file system has journaling feature to
maintain its state consistently. Some file system
like Journaling File System, JFS [3] is natively
designed for journaling. Or some file system like
Ext2 [9] adds journaling feature to the next
versions [1, 2]. Prabhakaran et al. [13] analyzed
and gave various experimental results about
several different file systems. In [11], it supports
selective journaling method. However, the
meaning of selective is different. In [11], a user
or administrator can select the target files or
directory for journaling.

Lee et al. [12] proposed a different approach
named UBJ to achieve fast and reliable journaling.
The UBJ uses non-volatile random access
memory like Phasechange RAM. They unified the
buffer cache with the journal area in the NVRAM.
However, this approach requires special hardware
support. Choi et al. [8] proposed a flash
translation layer based on a journal remapping
for a flash memory. They exploited the fact that
NAND based flash devices use out-of-place
update. They applied journal concept on the FTL

RFJ: A Reliable and Fast Journaling Mechanism

51

layer but this approach requires special interface
from the flash device to the file system to
communicate. Chidambaram et al. [15] proposed
optimistic crash consistency. Although they
proposed similar approach like selective
journaling, their approach requires hardware
modification to support new I/O interface.

6. Conclusion

In this paper, we proposed a reliable and fast
journaling mechanism named RFJ. We have
shown that the journal commit for new block
write operation is unnecessary for the journal
mode. In addition, the direct data buffer flushing
in the journaling daemon degrades the I/O
optimization of the I/O scheduler. Based on
these observations, we proposed selective
journaling mechanism and Ordering enforced
writeback journaling mode. The proposed
mechanism achieves high I/O throughput and
high reliability at the same time. Moreover, the
RFJ does not add or modify the data structures
related to journaling and this gives perfect
compatibility for existing recovery tool.

Because the result of the proposed mechanism
is impressive, currently, we are working on
adapting this algorithm to Ext4 which uses JBD2
as journaling daemon.

References

[1] S. C. Tweedie. EXT3, Journaling File System. ol-strans.
sourceforge.net/ release/OLS2000-ext3/OLS2000-ext3.html

[2] Mathur, Avantika, et al. "The new ext4 filesystem:
current status and future plans." Proceedings of the
Linux Symposium. Vol. 2. 2007.

[3] S. Best. JFS Log. How the Journaled File System
performs logging. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 163– 168,
Atlanta, 2000.

[4] Mason, Chris. "Journaling with reisersfs." Linux
Journal 2001.82es (2001): 3.

[5] Filebench, http://www.solarisinternals.com/

[6] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. Fsck - The UNIX File System Check Program.
Unix System Manager’s Manual 4.3 BSD Virtual
VAX-11 Version, April 1986.

[7] Kavalanekar, Swaroop, et al. "Characterization of
storage workload traces from production windows
servers." Workload Characterization, 2008. IISWC 2008.

[8] Jianxi Chen, Qingsong Wei, Cheng Chen, and Ling
kun Wu, FSMAC: A file system metadata accele rator
with non-volatile memory, MSST, May 2013.

[9] Bovet, Daniel P. Understanding the Linux kernel.
O'reilly, 2007.

[10] Design and Implementation of the Second Extended
Filesystem,
http://e2fsprogs.sourceforge.net/ext2intro.html

[11] Symantec, Enterprise Vault,
http://www.enterprisevault.com

[12] Lee, Eunji, Hyokyung Bahn, and Sam H. Noh.
"Unioning of the Buffer Cache and Journaling Layers
with Non-volatile Memory." 11th USENIX Conference
on File and Storage Technologies. 2013.

[13] Prabhakaran, Vijayan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. "Analysis and Evolution of
Journaling File Systems." USENIX Annual Technical
Conference, General Track. 2005.

[14] Choi, Hyun Jin, Seung-Ho Lim, and Kyu Ho Park.
"JFTL: A flash translation layer based on a journal
remapping for flash memory." ACM Transactions on
Storage (TOS) 4.4 (2009).

[15] Chidambaram, Vijay, et al. "Optimistic crash consistency."
Proceedings of the TwentyFourth ACM Symposium on
Operating Systems Principles. ACM, 2013.

박 세 진(Sejin Park) [정회원]

• 2007년 2월 : 금오공과대학교 소
프트웨어공학과 (공학사)

• 2016년 2월 : 포항공과대학교 컴
퓨터공학과 (공학박사)

• 2016년 10월 ~ 2018년 2월 :
SKTelecom Manager

• 2018년 3월 ~ 현재 : 계명대학교
교수

<관심분야>
시스템 소프트웨어, 운영체제, 블록체인

