Journal of the Korea Academia-Industrial https://doi.org/10.5762/KAIS.2019.20.7.45

cooperation Society ISSN 1975-4701 / eISSN 2288-4688
Vol. 20, No. 7 pp. 45-51, 2019

RFJ: A Reliable and Fast Journaling Mechanism

Sejin Park

Department of Computer Engineering, Keimyung University
RE): A28 14% dlolel v 493 7y

HEMIZE
o AREHSEAH

—

A3l

Jou
ot
Okl

Abstract Modern file systems have journaling mechanism to maintain their stored state consistently even
under unexpected system crashes or disasters. However, the journaling makes I/O throughput lower. This
performance degradation comes from the ordering mechanism between the data buffer and metadata
buffer and two-staged buffer writing. Especially, if the data buffer and metadata buffer are journalled
at the same time, then it incurs significant performance degradation due to the two-staged writing. That
shows the trade-off relation-ship between I/O performance and system reliability. In this paper, we
propose RFJ: a reliable and fast jour-naling mechanism to deal with this trade-off relationship. We
propose an ordering enforced writeback journaling mode and selective journaling mechanism. The
Ordering enforced writeback journaling mode achieves low I/O latency and the selective journaling
mechanism achieves high reliability. The experimental result shows that the performance of RFJ is
almost 5x faster than the journal mode of Ext3 file system but it still supports the same reliability with

the journal mode.

2 % Ad T AL a7]X X AIAF FA] EBe Al dROIAE HolHY did fAE Hsl AEH
AAUES AR T2 Ad2 1/0 H2leS Bolmal= 247 3t o] s A5t 241 ol v e} ve
glolg Huzte] ou g wAYSH 20A Huir|olA Z|Qlsk=t]. 53], wref dlolg H e} HEtholE W7t FA|
of Adge] HH, 294 27] o] ARt At A, ol= 1/0 4o AlAH AIEE 2] Trade-off

AL d&S vehdt B =82 RF #= A4 = 1% 11""3‘ 719 AlQkete}. o] 7' Ordering
enforced writeback Add T fA 2 AFEe FA 245 1/0 7t
7hssHA gtk 2 =wol A AjKeE 7o) A ATt 71E Ext3 7\1”*“4 nE ofn] oF 58 o] wE /0 AT
AAstAA FAll Ext3 Ad8T 54 59 AFAE Uete AL €9 & 4 Asith

Keywords : Journaling, Filesystem, Reliablility, Ordering, Data

1. Introduction Journaling mechanism enables fast file system

recovery even when the system is failed. When a

Unexpected crashes like power outage or new data is written to file system, a log for the
hardware failure can make file system state write operation is committed in journal area

inconsistently, which makes recovery harder. before the data is stored to the file system. This

This research was supported by the Keimyung University Research Grant of 2018.
*Corresponding Author : Sejin Park(Keimyung Univ.)

email: baksejin@kmu.ac.kr

Received April 8, 2019 Revised May 15, 2019

Accepted July 5 ,2019 Published July 31,2019

45



AR &85 =5 4] 41208 A7E, 2019

1. Write 2. Journal Commit 3. Journal Checkpoint

l Journal|| FS l Journall| FS l Journal| FS

S P *
| ?
i >
T1 T2 T3

Fig. 1. Journaling mechanism. When a new write
operation is issued at T1, then the data will
be committed to the journal area at T2. After
then, the data will be finally checkpointed to
the file system at T3.

committed log is the key for file system recovery
because the data will not be physically stored
into the file system before the log is committed.
Because of the reliability support, modern file
systems include journaling mechanism to maintain
their state consistently [1, 2, 3, 4]. Figure 1 shows
the basic operation of journaling mechanism.
Although the journaling mechanism serves
reliability in unexpected crash, there is
significant performance degradation. The data
block will be written twice - to the journal area
and then to the file system. In order to mitigate
this problem, many existing file systems support
various journaling modes. For example, the Ext3
file system supports three journaling modes. The
journal mode supports that all data blocks and
metadata blocks are committed into the journal
area prior to being written into the file system.
This
because it can recover data blocks and metadata
this the

slowest mode as well. Thus under data reliability

is the most reliable journaling mode

blocks simultaneously. However, is

is seriously important situation, the system
administrator sets journal mode. In the ordered
mode, only metadata blocks are committed to
the journal area but the written order is forced.
The data blocks are directly written to the file
system prior to metadata blocks being committed
to the journal area. Although it only commits
metadata blocks, the ordering control serves
recovery chance and it

considerable gives

46

.

Journal

Ordered Writeback

Fig. 2. I/O throughput of fileserver workload in
the Filebench comparing with various
journaling modes under Ext3 file system.

moderate write overhead. This is the default
journaling mode for the file system. The last
journaling mode is writeback. It only commits
metadata blocks like ordered mode but there is
no ordering control. Therefore, it has low chance
to recover data but this is the fastest journaling
mode. As explained above, there are trade-off
relationship between reliability and write latency.

In this paper, we propose a reliable and fast
journaling mechanism named RFJ to solve the
trade-off relationship. The RFJ not only supports
high reliability of the journal mode but also
achieves low write latency of the ordered mode.

Contributions of this paper are as follows.

1. Detailed of the trade-off

relationship between file system reliability

explanation

and performance under various journaling

modes.

2.A new journaling mode named Ordering
enforced  writeback is proposed. It
guarantees the ordering between the

metadata and the data but it works as fast as
writeback mode.
3.A dynamic journaling mode selection
method makes this system as reliable as
journal mode. It only journals overwritten

data blocks.

2. Trade—-off between 1/O Performance

and Reliability of File System



RFJ: A Reliable and Fast Journaling Mechanism

1. Write 2. Journal Commit 3. Journal Checkpoint 1. Write 2. Journal Commit 3. Journal Checkpoint
l Journal| FS l Journall FS l Journal| FS l Journal|| FS Journal| FS
= =31 Data = Data = [==31 Data =
] | | » | | :
2 i j e = j D
T1 T2 T3 T4 Ts Te6 Tl 2 T3 T4 T5 T6
(a) New block write @ New data (a) New block write @ New data
1. Write 2. Journal Commit 3. Journal Checkpoint 1. Write 2. Journal Commit 3. Joumnal Checkpoint
l fournal[ FS ) Journall| FS Journal| FS l Journall( FS l Journall FS l Journall
= Data ) | =) | QoEIEE ata )| => = Data) | => | QXIEL Data) | =>
e
| al | : = !
L i i 4 I }/
T1 T2 T3 T T6 T1 T2 T3 T4 T5 To

(b) Existing block overwrite @ New data () Existing data

Fig. 3. Ordered mode in the Ext3 file system. (a)
depicts new block write case and (b) depicts
existing block overwrite

In this section, we describe the file system
performance and inconsistency for each journaling
modes. As explained in the section 1, there are
three journaling modes in the Ext3 file system.
The relationship among various journaling modes
is trade-off between file system reliability and

1/0 performance.

2.1 1/O Throughput

In order to see the performance difference, we
evaluate each journaling mode of Ext3 file
[5]. The
workload fileserver emulates simple fileserver 1/O

system using Filebench benchmark

activity. This workload performs a sequence of

creates, deletes, appends, reads, writes and
attribute operations on a directory tree. 50
threads are used by default. The evaluation is
conducted on Intel Xeon E5620 2.4 GHz x 8
cores with 16 GB of RAM and the hard disk drive
is 7,200 RPM with SATA interface. Figure 2 shows
the result of the evaluation. The journal mode
shows the worst performance for these two
workloads since the journal mode journals not
only metadata blocks but also data blocks. This

causes doubled write for all write operation. In

47

(b) Existing block overwrite (@) New data () Existing data

Fig. 4. Journal mode in the Ext3 file system. (a)
depicts new block write case and (b) depicts
existing block overwrite

contrast, the ordered and writeback modes show
much better performance because they journal
only metadata blocks. Furthermore, the writeback
mode does not enforce the ordering control.
Thus it shows the best performance. Note that
metadata size is much smaller then data blocks.
However, the reliability of each journaling mode
is also different.

2.2 Reliability of Writeback mode

Although the writeback mode shows best
performance, it has the lowest reliability among
all journaling modes. Though it journals the
metadata into the journal area, there is no
ordering control in this mode. Therefore, system
crash can cause file system inconsistency when
the data block has not been written. In this
mode, when the file system recovery tool such as
fsckl6] begins to recover, the metadata in the
journal area does not guarantee anything. At
most, the tool can recognize that there can be a
problem when the metadata is remained in the

journal area.

2.3 Reliability of Ordered mode



AR &85 =5 4] 41208 A7E, 2019

The ordered mode is the default journaling
mode for the Ext3 file system because this mode
supports a nice scheme. In this mode, the data
blocks are directly written to the file system prior
to metadata blocks being committed to the
journal area. That is, the metadata block cannot
be committed to the journal area without data
blocks writing. This enforced ordering control
efficiently guarantees file system consistency in
many cases. Figure 3 shows the operation
sequence of ordered mode. In the case of new
block write (Figure 3-(a)), file system can always
be consistent. Though written data block can be
lost, the file system always maintains consistent
Note that, guaranteeing file

state. system

consistency is not guaranteeing data block
recovery. However the case of block overwrite
(Figure 3-(b)), the file system can be remained
inconsistent. If system is crashed from time T1 to
T3, then the existing data will be lost. In this
situation, the file system metadata points to the
existing data but there are no such data anymore
due to the overwrite. That is, the metadata - data

connection semantics is invalid.

2.4 Reliability of Journal mode

Figure 4 depicts the journaling operation
sequence for journal mode in the Ext3 file
system. In this mode, all metadata blocks and
data blocks are committed to the journal area
and

to the file system.

system can always be

the block

overwrite case, the metadata - data connection

then checkpointed
the file

maintained consistently. Even

Therefore,

in

semantics is still valid. If the system is crashed
from time T4 to T5 and the metadata block has
not been overwritten and the data block has
been overwritten. In this case, the file system
recovery tool can correct the inconsistency
because there are still metadata and data blocks

in the journal area.

48

3. Design

In this section we describe some observations
of file access pattern and the current ordering
mechanism. Then, we show the architecture of
the RFJ and we explain a new journaling mode

named ordering enforced writeback mode.

3.1 Observations

In order to see the benefit of selective journaling,
we evaluated real world traces. We classified
each block write operation into two cases: new
block writing and existing block overwriting case.
Figure 5 shows the classification result of real
world traces from several production servers at
Microsoft [7]. Some traces such as BuildServer2
are block overwrite dominant. Because of the
characteristics of building process, there are
many file modifications.

However, most of traces are new block write
dominant. If we apply journal mode to these
workloads, the journaling mechanism will do
unnecessary write operation because the new
block write case can be covered by ordered
mode. That is to say, to maintain file system
consistently, journal committing of data block is
not required for new block write case. Only block
overwrite case requires journal committing of
data block.

We analyzed the ordering mechanism of the
existing file system (Ext3). The ordering is
guaranteed by the journaling daemon such as
kjournald kernel thread. The journaling daemon
forces synchronous I/O request submission to
flush data buffer to the I/O scheduler and waits
for the completion of the request before it
This

guarantees the ordering semantic between the

journals metadata. mechanism always

data buffer and the metadata buffer. However,
the

overheads that makes ordered mode slower. The

ordering operation causes additional

forced data flushing operation breaks the 1/O



RFJ: A Reliable and Fast Journaling Mechanism

Percentage (%)

e}

{5

e}

%@é PP Pt 0
¢ SIS MR N & > &
&“\@\9\\9\&&\&@@@
& F & @ 9 P ¥ H B
& zﬁ\ %‘b & AY' be \& a&
3 ¢ S I S
& éﬁl@ \*0 Q@# Q\ \‘b b\
K2

DO Block Overwrite m New block write

Fig. 5. Classification of write operation on real
world workload

submission optimization of the I/O scheduler.
That is, if we use the kernel's default buffer
flusher such as pdflush or per-BDI flusher
instead of flushing data buffer directly in the
journaling daemon, then we can achieve higher

performance.

3.2 Architecture

Based on the observations, we propose a new
journaling technique to achieve reliable and fast
journaling. Figure 6 shows the architecture of
RFJ. It consists of Buffer Monitor, Journal Mode
I/O Completion Checker I/0

Completion checking list.

Selector, and

The Buffer Monitor marks each buffer’s state.
If current buffer is already existed then the
buffer is marked as overwritten buffer and if it is
newly allocated buffer, then it is marked as new
buffer. If current buffer is marked as a new
buffer, then the buffer entry is inserted to the
I/O completion checking list. The Journal Mode
Selector selects journaling mode based on the
buffer’s state. If the buffer is marked as overwritten,
then it is processed as data journaling mode.
That is the same with the journal mode in the
Ext3 file system. If the buffer is marked as a new
buffer then it is processed as Ordering enforced
The
writeback mode does not directly flush data

buffer to the disk. The data buffer is flushed by

writeback  mode. Ordering enforced

49

‘Write operation
v
Virtual File System

[

File System l
| Buffer Monitor ! Bz
o0
.5
=
3
Journaling Daemon =
=
Journal Mode Selector -?2)
Data Journal Ordering enforced =
mode writeback mode E
T
/O Completion g
Checker I
y
Journal Area I
Fig. 6. Architecture of RFJ
kernel's default flusher such as pdflush or
per-BDI flusher. It just waits for the I/O

completion of the data buffer and if the data
buffer is written to the disk, then it begins to
journal the metadata buffer. To do this, the I/O
Completion Checker waits and polls checks the
state of the buffers in the I/O Completion
checking list. If the buffer is successfully written
by the kernel's default flusher, the state of the
buffer is modified to I/O completed state. Thus,
the I/O completion checker can check the state

of the buffer. Figure 7 depicts detailed operation.

4. Evaluation

4.1 Experimental Environment

We implement proposed method based on the
Ext3 file system. The Ext3 file system uses
Journaling Block Device as a journal area. We
modified this JBD and the journaling daemon.
Experimental environment has 8 cores of Intel
Xeon E5620 2.4 GHz with 8 GB of RAM. We used
Ubuntu 12.04 LTS as operating system that runs

the Linux kernel version 3.5.0.

4.2 Reliability analysis
The RFJ has the same reliability with the

Journal mode of the Ext3 file system. The original



AR &85 =5 4] 41208 A7E, 2019

|
Journal Area . o Journal Area
<] = N E]
2 L2 2 m-8a
= S :
m % /O Completion | 5 l/(‘) C.cn_nplet_lvon
é - LheLklng list I 85 checking list
3 m s )
EMm ||
A\ LB |
FS Area | FS Arca
v |
|
|

(a) Before FS flushing completion | (b) After FS flushing completion

Unclassiﬁcd initial buffer DNcwly allocated buffer: I/0 Issued
-Already existing buffer Ncwly allocated buffer: I/O Completed

Fig. 7. Detailed operation. D means data and M
means metadata. When a new write
operation is issued, the buffer monitor
classifies each buffer (1) and the newly
allocated buffers are inserted to the I/O
Completion checking list.(2). After then, the
journaling daemon wakes up and journals
the already existing buffers (3). At this point,
it cannot journal the metadata buffer since
there are still data buffers that are not
written to the disk. Because there is nothing
to do, the journaling daemon sleeps. Later,
kernel's buffer flusher flushes the newly
allocated buffers (4) then the buffers in the
checking list are changed to I/O Completed.
When the journaling daemon wakes up, now
it can journal the metadata (5) because of
the data buffers are resided in the FS area.
After that, the checking list is cleared.

journal mode journals all data blocks but RFJ
blocks  that

overwritten. For the newly allocated blocks,

selectively  journals data is
ordering control is enough to maintain file
system consistently. In additional, we do not add
or modify data structure for the journaling for

the compatibility with existing recovery tools.

4.3 1/0 Throughput

Figure 8 shows the result of Filebenchl[5]
benchmark. The RFJ shows almost 5 times better
performance than the Journal mode. It also
outperforms the ordered mode. We think that the
Filebench benchmark contains lots of new writes.
If it contains lots of overwrite, the performance
will be lower. However, as we analyzed in section

3.1, this kind of workload is general case.

50

80

70
60
50
40
30
20

0 .

Ordered erteback RFJ

(MB/s)

Journal

Fig. 8. Throughput comparison to the default
journaling modes in the Ext3 File system.
Result of File server workload in the
Filebench.

This shows that we can achieve almost the
same I/O throughput with the writeback mode
but we can achieve the reliability of journal

mode at the same time.

5. Related Works

Modern file system has journaling feature to
maintain its state consistently. Some file system
like Journaling File System, JES [3] is natively
designed for journaling. Or some file system like
Ext2 [9] adds journaling feature to the next
versions [1, 2]. Prabhakaran et al. [13] analyzed
and gave various experimental results about
several different file systems. In [11], it supports

the

meaning of selective is different. In [11], a user

selective journaling method. However,
or administrator can select the target files or
directory for journaling.

Lee et al. [12] proposed a different approach
named UBJ to achieve fast and reliable journaling.
The UBJ uses
memory like Phasechange RAM. They unified the
buffer cache with the journal area in the NVRAM.
However, this approach requires special hardware
Choi (8]

translation layer based on a journal remapping

non-volatile random access

support. et al proposed a flash
for a flash memory. They exploited the fact that
NAND based flash devices use out-of-place

update. They applied journal concept on the FTL



RFJ: A Reliable and Fast Journaling Mechanism

layer but this approach requires special interface
from the flash device to the file system to
communicate. Chidambaram et al. [15] proposed
optimistic crash consistency. Although they

like

journaling, their approach requires hardware

proposed  similar  approach selective

modification to support new I/O interface.

6. Conclusion

In this paper, we proposed a reliable and fast
journaling mechanism named RFJ. We have
shown that the journal commit for new block
write operation is unnecessary for the journal
mode. In addition, the direct data buffer flushing
in the journaling daemon degrades the 1/0O
optimization of the 1/O scheduler. Based on
these observations, we proposed selective
journaling mechanism and Ordering enforced

The
mechanism achieves high I/O throughput and

writeback journaling mode. proposed

high reliability at the same time. Moreover, the
RFJ] does not add or modify the data structures
related to journaling and this gives perfect
compatibility for existing recovery tool.
Because the result of the proposed mechanism
is impressive, currently, we are working on

adapting this algorithm to Ext4 which uses JBD2

as journaling daemon.

References

[1] S. C. Tweedie. EXT3, Journaling File System. ol-strans.
sourceforge.net/ release/OLS2000-ext3/OLS2000-ext3.html

[2] Mathur, Avantika, et al. "The new ext4 filesystem:
current status and future plans." Proceedings of the

Linux Symposium. Vol. 2. 2007.

[3] S. Best. JFS Log. How the Journaled File System
performs logging. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 163- 168,

Atlanta, 2000.
[4]

Mason, Chris. "Journaling with reisersfs." Linux

Journal 2001.82es (2001): 3.

51

[10]

[11]

[12]

[13]

[14]

[15]

Filebench, http://www.solarisinternals.com/

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. Fsck - The UNIX File System Check Program.
Unix System Manager's Manual 4.3 BSD Virtual
VAX-11 Version, April 1986.

Kavalanekar, Swaroop, et al. "Characterization of
storage workload traces from production windows
servers." Workload Characterization, 2008. IISWC 2008.

Jianxi Chen, Qingsong Wei, Cheng Chen, and Ling
kun Wu, FSMAC: A file system metadata accele rator
with non-volatile memory, MSST, May 2013.

Bovet, Daniel P. Understanding the Linux kernel.
O'reilly, 2007.

Design and Implementation of the Second Extended
Filesystem,
http://e2fsprogs.sourceforge.net/ext2intro.html

Symantec, Enterprise Vault,
http://www.enterprisevault.com

Lee, FEunji, Hyokyung Bahn, and Sam H. Noh.
"Unioning of the Buffer Cache and Journaling Layers
with Non-volatile Memory." 11th USENIX Conference
on File and Storage Technologies. 2013.

Prabhakaran, Vijayan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. "Analysis and Evolution of
Journaling File Systems." USENIX Annual Technical
Conference, General Track. 2005.

Choi, Hyun Jin, Seung-Ho Lim, and Kyu Ho Park.
"JFTL: A flash translation layer based on a journal
remapping for flash memory." ACM Transactions on
Storage (TOS) 4.4 (2009).

Chidambaram, Vijay, et al. "Optimistic crash consistency."
Proceedings of the TwentyFourth ACM Symposium on
Operating Systems Principles. ACM, 2013.

gh M| ZI(Sejin Park) (M35
+ 20079 2¥ : Fe3ddisy &

ZEYolgeat (T}
. 20169 29 : ZagaEtE 7

FeBala (Zepup
201649 109 ~ 20184¢ 24 :
SKTelecom Manager

20189 3¢9 ~ @A : Agdigw

2





