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Abstract  Modern file systems have journaling mechanism to maintain their stored state consistently even
under unexpected system crashes or disasters. However, the journaling makes I/O throughput lower. This
performance degradation comes from the ordering mechanism between the data buffer and metadata 
buffer and two-staged buffer writing. Especially, if the data buffer and metadata buffer are journalled 
at the same time, then it incurs significant performance degradation due to the two-staged writing. That
shows the trade-off relation-ship between I/O performance and system reliability. In this paper, we 
propose RFJ: a reliable and fast jour-naling mechanism to deal with this trade-off relationship. We 
propose an ordering enforced writeback journaling mode and selective journaling mechanism. The 
Ordering enforced writeback journaling mode achieves low I/O latency and the selective journaling 
mechanism achieves high reliability. The experimental result shows that the performance of RFJ is 
almost 5x faster than the journal mode of Ext3 file system but it still supports the same reliability with 
the journal mode.

요  약  현대 파일 시스템은 예기치 못한 시스템 크래시 또는 재난 상황에서도 데이터의 일관성 유지를 위해 저널링
메커니즘을 유지한다. 그러나 저널링은 I/O 처리율을 떨어뜨리는 문제가 있다. 이 성능 저하 문제는 데이터 버퍼와 메타
데이터 버퍼간의 오더링 메커니즘과 2단계 버퍼쓰기에서 기인하는데. 특히, 만약 데이터 버퍼와 메타데이터 버퍼가 동시
에 저널링이 되면, 2단계 쓰기 때문에 심각한 성능저하가 발생하며, 이는 I/O 성능과 시스템 신뢰도 간의 Trade-off
관계가 있음을 나타낸다. 본 논문은 RFJ 라는 신뢰성 있는 고속 저널링 기법을 제안한다. 이 기법은 Ordering 
enforced writeback 저널링 모드와 selective journaling 메커니즘을 도입해서 높은 신뢰도와 동시에 고성능 I/O 가
가능하게 한다. 본 논문에서 제안한 기법의 실험 결과 기존 Ext3 저널링 모드 대비 약 5배 이상 빠른 I/O 처리량을 
지원하면서 동시에 Ext3 저널링과 동일한 수준의 신뢰성을 나타는 것을 확인 할 수 있었다.
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1. Introduction

Unexpected crashes like power outage or 
hardware failure can make file system state 
inconsistently, which makes recovery harder. 

Journaling mechanism enables fast file system 
recovery even when the system is failed. When a 
new data is written to file system, a log for the 
write operation is committed in journal area 
before the data is stored to the file system. This 
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Fig. 2. I/O throughput of fileserver workload in
the Filebench comparing with various 
journaling modes under Ext3 file system.

Fig. 1. Journaling mechanism. When a new write 
operation is issued at T1, then the data will 
be committed to the journal area at T2. After
then, the data will be finally checkpointed to 
the file system at T3.

committed log is the key for file system recovery 
because the data will not be physically stored 
into the file system before the log is committed. 
Because of the reliability support, modern file 
systems include journaling mechanism to maintain 
their state consistently [1, 2, 3, 4]. Figure 1 shows 
the basic operation of journaling mechanism.

Although the journaling mechanism serves 
reliability in unexpected crash, there is 
significant performance degradation. The data 
block will be written twice - to the journal area 
and then to the file system. In order to mitigate 
this problem, many existing file systems support 
various journaling modes. For example, the Ext3 
file system supports three journaling modes. The 
journal mode supports that all data blocks and 
metadata blocks are committed into the journal 
area prior to being written into the file system. 
This is the most reliable journaling mode 
because it can recover data blocks and metadata 
blocks simultaneously. However, this is the 
slowest mode as well. Thus under data reliability 
is seriously important situation, the system 
administrator sets journal mode. In the ordered 
mode, only metadata blocks are committed to 
the journal area but the written order is forced. 
The data blocks are directly written to the file 
system prior to metadata blocks being committed 
to the journal area. Although it only commits 
metadata blocks, the ordering control serves 
considerable recovery chance and it gives 

moderate write overhead. This is the default 
journaling mode for the file system. The last 
journaling mode is writeback. It only commits 
metadata blocks like ordered mode but there is 
no ordering control. Therefore, it has low chance 
to recover data but this is the fastest journaling 
mode. As explained above, there are trade-off 
relationship between reliability and write latency.

In this paper, we propose a reliable and fast 
journaling mechanism named RFJ to solve the 
trade-off relationship. The RFJ not only supports 
high reliability of the journal mode but also 
achieves low write latency of the ordered mode.

Contributions of this paper are as follows.
1. Detailed explanation of the trade-off 

relationship between file system reliability 
and performance under various journaling 
modes.

2. A new journaling mode named Ordering 
enforced writeback is proposed. It 
guarantees the ordering between the 
metadata and the data but it works as fast as 
writeback mode.

3. A dynamic journaling mode selection 
method makes this system as reliable as 
journal mode. It only journals overwritten 
data blocks. 

2. Trade-off between I/O Performance 
and Reliability of File System
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Fig. 3. Ordered mode in the Ext3 file system. (a) 
depicts new block write case and (b) depicts
existing block overwrite

Fig. 4. Journal mode in the Ext3 file system. (a) 
depicts new block write case and (b) depicts
existing block overwrite 

In this section, we describe the file system 
performance and inconsistency for each journaling 
modes. As explained in the section 1, there are 
three journaling modes in the Ext3 file system. 
The relationship among various journaling modes 
is trade-off between file system reliability and 
I/O performance.

2.1 I/O Throughput
In order to see the performance difference, we 

evaluate each journaling mode of Ext3 file 
system using Filebench benchmark [5]. The 
workload fileserver emulates simple fileserver I/O 
activity. This workload performs a sequence of 
creates, deletes, appends, reads, writes and 
attribute operations on a directory tree. 50 
threads are used by default. The evaluation is 
conducted on Intel Xeon E5620 2.4 GHz x 8 
cores with 16 GB of RAM and the hard disk drive 
is 7,200 RPM with SATA interface. Figure 2 shows 
the result of the evaluation. The journal mode 
shows the worst performance for these two 
workloads since the journal mode journals not 
only metadata blocks but also data blocks. This 
causes doubled write for all write operation. In 

contrast, the ordered and writeback modes show 
much better performance because they journal 
only metadata blocks. Furthermore, the writeback 
mode does not enforce the ordering control. 
Thus it shows the best performance. Note that 
metadata size is much smaller then data blocks. 
However, the reliability of each journaling mode 
is also different.

2.2 Reliability of Writeback mode
Although the writeback mode shows best 

performance, it has the lowest reliability among 
all journaling modes. Though it journals the 
metadata into the journal area, there is no 
ordering control in this mode. Therefore, system 
crash can cause file system inconsistency when 
the data block has not been written. In this 
mode, when the file system recovery tool such as 
fsck[6] begins to recover, the metadata in the 
journal area does not guarantee anything. At 
most, the tool can recognize that there can be a 
problem when the metadata is remained in the 
journal area.

2.3 Reliability of Ordered mode
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The ordered mode is the default journaling 
mode for the Ext3 file system because this mode 
supports a nice scheme. In this mode, the data 
blocks are directly written to the file system prior 
to metadata blocks being committed to the 
journal area. That is, the metadata block cannot 
be committed to the journal area without data 
blocks writing. This enforced ordering control 
efficiently guarantees file system consistency in 
many cases. Figure 3 shows the operation 
sequence of ordered mode. In the case of new 
block write (Figure 3-(a)), file system can always 
be consistent. Though written data block can be 
lost, the file system always maintains consistent 
state. Note that, guaranteeing file system 
consistency is not guaranteeing data block 
recovery. However the case of block overwrite 
(Figure 3-(b)), the file system can be remained 
inconsistent. If system is crashed from time T1 to 
T3, then the existing data will be lost. In this 
situation, the file system metadata points to the 
existing data but there are no such data anymore 
due to the overwrite. That is, the metadata – data 
connection semantics is invalid.

2.4 Reliability of Journal mode
Figure 4 depicts the journaling operation 

sequence for journal mode in the Ext3 file 
system. In this mode, all metadata blocks and 
data blocks are committed to the journal area 
and then checkpointed to the file system. 
Therefore, the file system can always be 
maintained consistently. Even in the block 
overwrite case, the metadata – data connection 
semantics is still valid. If the system is crashed 
from time T4 to T5 and the metadata block has 
not been overwritten and the data block has 
been overwritten. In this case, the file system 
recovery tool can correct the inconsistency 
because there are still metadata and data blocks 
in the journal area.

3. Design

In this section we describe some observations 
of file access pattern and the current ordering 
mechanism. Then, we show the architecture of 
the RFJ and we explain a new journaling mode 
named ordering enforced writeback mode.

3.1 Observations
In order to see the benefit of selective journaling, 

we evaluated real world traces. We classified 
each block write operation into two cases: new 
block writing and existing block overwriting case. 
Figure 5 shows the classification result of real 
world traces from several production servers at 
Microsoft [7]. Some traces such as BuildServer2 
are block overwrite dominant. Because of the 
characteristics of building process, there are 
many file modifications.

However, most of traces are new block write 
dominant. If we apply journal mode to these 
workloads, the journaling mechanism will do 
unnecessary write operation because the new 
block write case can be covered by ordered 
mode. That is to say, to maintain file system 
consistently, journal committing of data block is 
not required for new block write case. Only block 
overwrite case requires journal committing of 
data block.

We analyzed the ordering mechanism of the 
existing file system (Ext3). The ordering is 
guaranteed by the journaling daemon such as 
kjournald kernel thread. The journaling daemon 
forces synchronous I/O request submission to 
flush data buffer to the I/O scheduler and waits 
for the completion of the request before it 
journals metadata. This mechanism always 
guarantees the ordering semantic between the 
data buffer and the metadata buffer. However, 
the ordering operation causes additional 
overheads that makes ordered mode slower. The 
forced data flushing operation breaks the I/O 
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Fig. 6. Architecture of RFJ

Fig. 5. Classification of write operation on real 
world workload

submission optimization of the I/O scheduler. 
That is, if we use the kernel’s default buffer 
flusher such as pdflush or per-BDI flusher 
instead of flushing data buffer directly in the 
journaling daemon, then we can achieve higher 
performance.

3.2 Architecture
Based on the observations, we propose a new 

journaling technique to achieve reliable and fast 
journaling. Figure 6 shows the architecture of 
RFJ. It consists of Buffer Monitor, Journal Mode 
Selector, I/O Completion Checker and I/O 
Completion checking list.

The Buffer Monitor marks each buffer’s state. 
If current buffer is already existed then the 
buffer is marked as overwritten buffer and if it is 
newly allocated buffer, then it is marked as new 
buffer. If current buffer is marked as a new 
buffer, then the buffer entry is inserted to the 
I/O completion checking list. The Journal Mode 
Selector selects journaling mode based on the 
buffer’s state. If the buffer is marked as overwritten, 
then it is processed as data journaling mode. 
That is the same with the journal mode in the 
Ext3 file system. If the buffer is marked as a new 
buffer then it is processed as Ordering enforced 
writeback mode. The Ordering enforced 
writeback mode does not directly flush data 
buffer to the disk. The data buffer is flushed by 

kernel’s default flusher such as pdflush or 
per-BDI flusher. It just waits for the I/O 
completion of the data buffer and if the data 
buffer is written to the disk, then it begins to 
journal the metadata buffer. To do this, the I/O 
Completion Checker waits and polls checks the 
state of the buffers in the I/O Completion 
checking list. If the buffer is successfully written 
by the kernel’s default flusher, the state of the 
buffer is modified to I/O completed state. Thus, 
the I/O completion checker can check the state 
of the buffer. Figure 7 depicts detailed operation.

4. Evaluation

4.1 Experimental Environment
We implement proposed method based on the 

Ext3 file system. The Ext3 file system uses 
Journaling Block Device as a journal area. We 
modified this JBD and the journaling daemon. 
Experimental environment has 8 cores of Intel 
Xeon E5620 2.4 GHz with 8 GB of RAM. We used 
Ubuntu 12.04 LTS as operating system that runs 
the Linux kernel version 3.5.0.

4.2 Reliability analysis
The RFJ has the same reliability with the 

Journal mode of the Ext3 file system. The original 
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Fig. 7. Detailed operation. D means data and M 
means metadata. When a new write
operation is issued, the buffer monitor
classifies each buffer (1) and the newly
allocated buffers are inserted to the I/O 
Completion checking list.(2). After then, the 
journaling daemon wakes up and journals
the already existing buffers (3). At this point,
it cannot journal the metadata buffer since
there are still data buffers that are not 
written to the disk. Because there is nothing
to do, the journaling daemon sleeps. Later, 
kernel’s buffer flusher flushes the newly 
allocated buffers (4) then the buffers in the 
checking list are changed to I/O Completed.
When the journaling daemon wakes up, now
it can journal the metadata (5) because of 
the data buffers are resided in the FS area. 
After that, the checking list is cleared.

Fig. 8. Throughput comparison to the default 
journaling modes in the Ext3 File system. 
Result of File server workload in the 
Filebench.

journal mode journals all data blocks but RFJ 
selectively journals data blocks that is 
overwritten. For the newly allocated blocks, 
ordering control is enough to maintain file 
system consistently. In additional, we do not add 
or modify data structure for the journaling for 
the compatibility with existing recovery tools.

4.3 I/O Throughput
Figure 8 shows the result of Filebench[5] 

benchmark. The RFJ shows almost 5 times better 
performance than the Journal mode. It also 
outperforms the ordered mode. We think that the 
Filebench benchmark contains lots of new writes. 
If it contains lots of overwrite, the performance 
will be lower. However, as we analyzed in section 
3.1, this kind of workload is general case.

This shows that we can achieve almost the 
same I/O throughput with the writeback mode 
but we can achieve the reliability of journal 
mode at the same time.

5. Related Works

Modern file system has journaling feature to 
maintain its state consistently. Some file system 
like Journaling File System, JFS [3] is natively 
designed for journaling. Or some file system like 
Ext2 [9] adds journaling feature to the next 
versions [1, 2]. Prabhakaran et al. [13] analyzed 
and gave various experimental results about 
several different file systems. In [11], it supports 
selective journaling method. However, the 
meaning of selective is different. In [11], a user 
or administrator can select the target files or 
directory for journaling.

Lee et al. [12] proposed a different approach 
named UBJ to achieve fast and reliable journaling. 
The UBJ uses non-volatile random access 
memory like Phasechange RAM. They unified the 
buffer cache with the journal area in the NVRAM. 
However, this approach requires special hardware 
support. Choi et al. [8] proposed a flash 
translation layer based on a journal remapping 
for a flash memory. They exploited the fact that 
NAND based flash devices use out-of-place 
update. They applied journal concept on the FTL 
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layer but this approach requires special interface 
from the flash device to the file system to 
communicate. Chidambaram et al. [15] proposed 
optimistic crash consistency. Although they 
proposed similar approach like selective 
journaling, their approach requires hardware 
modification to support new I/O interface.

6. Conclusion

In this paper, we proposed a reliable and fast 
journaling mechanism named RFJ. We have 
shown that the journal commit for new block 
write operation is unnecessary for the journal 
mode. In addition, the direct data buffer flushing 
in the journaling daemon degrades the I/O 
optimization of the I/O scheduler. Based on 
these observations, we proposed selective 
journaling mechanism and Ordering enforced 
writeback journaling mode. The proposed 
mechanism achieves high I/O throughput and 
high reliability at the same time. Moreover, the 
RFJ does not add or modify the data structures 
related to journaling and this gives perfect 
compatibility for existing recovery tool.

Because the result of the proposed mechanism 
is impressive, currently, we are working on 
adapting this algorithm to Ext4 which uses JBD2 
as journaling daemon. 

References

[1] S. C. Tweedie. EXT3, Journaling File System. ol-strans. 
sourceforge.net/ release/OLS2000-ext3/OLS2000-ext3.html

[2] Mathur, Avantika, et al. "The new ext4 filesystem: 
current status and future plans." Proceedings of the 
Linux Symposium. Vol. 2. 2007.

[3] S. Best. JFS Log. How the Journaled File System 
performs logging. In Proceedings of the 4th Annual 
Linux Showcase and Conference, pages 163– 168, 
Atlanta, 2000.

[4] Mason, Chris. "Journaling with reisersfs." Linux 
Journal 2001.82es (2001): 3.

[5] Filebench, http://www.solarisinternals.com/

[6] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. 
Fabry. Fsck - The UNIX File System Check Program. 
Unix System Manager’s Manual  4.3 BSD Virtual 
VAX-11 Version, April 1986.

[7] Kavalanekar, Swaroop, et al. "Characterization of 
storage workload traces from production windows 
servers." Workload Characterization, 2008. IISWC 2008.

[8] Jianxi Chen, Qingsong Wei, Cheng Chen, and Ling 
kun Wu, FSMAC: A file system metadata accele rator 
with non-volatile memory, MSST, May 2013.

[9] Bovet, Daniel P. Understanding the Linux kernel. 
O'reilly, 2007.

[10] Design and Implementation of the Second Extended 
Filesystem, 
http://e2fsprogs.sourceforge.net/ext2intro.html

[11] Symantec, Enterprise Vault, 
http://www.enterprisevault.com

[12] Lee, Eunji, Hyokyung Bahn, and Sam H. Noh. 
"Unioning of the Buffer Cache and Journaling Layers 
with Non-volatile Memory." 11th USENIX Conference 
on File and Storage Technologies. 2013.

[13] Prabhakaran, Vijayan, Andrea C. Arpaci-Dusseau, and 
Remzi H. Arpaci-Dusseau. "Analysis and Evolution of 
Journaling File Systems." USENIX Annual Technical 
Conference, General Track. 2005.

[14] Choi, Hyun Jin, Seung-Ho Lim, and Kyu Ho Park. 
"JFTL: A flash translation layer based on a journal 
remapping for flash memory." ACM Transactions on 
Storage (TOS) 4.4 (2009).

[15] Chidambaram, Vijay, et al. "Optimistic crash consistency." 
Proceedings of the TwentyFourth ACM Symposium on 
Operating Systems Principles. ACM, 2013.

박 세 진(Sejin Park)                     [정회원]

• 2007년 2월 : 금오공과대학교 소
프트웨어공학과 (공학사)

• 2016년 2월 : 포항공과대학교 컴
퓨터공학과 (공학박사)

• 2016년 10월 ~ 2018년 2월 : 
SKTelecom Manager

• 2018년 3월 ~ 현재 : 계명대학교 
교수

<관심분야>
시스템 소프트웨어, 운영체제, 블록체인




