DOI QR코드

DOI QR Code

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering

RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구

  • Jang, Ki-June (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 장기준 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2019.02.12
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

이산화바나듐은 잘 알려진 금속-절연체 상전이 물질이며, 바나듐 레독스 흐름 전지는 대규모 에너지 저장장치로 활용하기 위해서 많은 연구가 이루어져왔다. 본 연구에서는 바나듐 옥사이드 ($VO_x$) 박막을 리튬이온 이차전지의 양극으로 적용하는 연구를 수행하였다. 이를 위해서 $VO_x$ 박막을 실리콘 웨이퍼 위에 열산화공정으로 300 nm 두께의 $SiO_2$ 층이 형성된 Si 기판 및 쿼츠 기판 위에 RF 마그네트론 스퍼터 시스템으로 60분 동안 $500^{\circ}C$에서 다른 RF 파워로 증착하였다. 증착된 $VO_x$ 박막의 표면형상을 전계방출 주사전자현미경으로 조사하였고, 결정학적 특성을 Raman 분광학으로 분석하였다. 투과율 및 흡수율과 같은 광학적 특성은 자외선-가시광선 분광계로 조사하였다. Cu Foil 위에 증착된 $VO_x$ 박막을 리튬이온전지의 양극물질로 적용하여 CR2032 코인셀을 제작하였고, 전기화학적 특성을 조사하였다. 그 결과 증착된 $VO_x$ 박막은 RF 파워가 증가할수록 낟알 크기가 증가하였고, RF 파워 200 W 이상에서 증착된 박막은 $VO_2$상을 나타내었다. 증착된 $VO_x$ 박막의 투과율은 결정상에 따라 다른 값을 나타내었다. $VO_x$ 박막의 이차전지 특성은 높은 표면적을 가질수록, 결정상이 혼재될수록 높은 충방전 특성을 나타내었다.

Keywords

SHGSCZ_2019_v20n6_80_f0001.png 이미지

Fig. 1. FE-SEM images of as-deposited VOx thin films on SiO2(300 nm)/Si substrates with RF power (a) 100 watt, (b) 200 watt (c) 300 watt deposited at 500 °C substrate temperature.

SHGSCZ_2019_v20n6_80_f0002.png 이미지

Fig. 2. Raman spectra of as-deposited VOx thin films on SiO2(300 nm)/Si substrates with RF power (a) 100 watt, (b) 200 watt (c) 300 watt deposited at 500 °C substrate temperature.

SHGSCZ_2019_v20n6_80_f0003.png 이미지

Fig. 3. Optical (a) absorption and (b) transmittance of as-deposited VOx thin films on quartz substrates for different RF power of 100 watt, 200 watt, and 300 watt, respectively.

SHGSCZ_2019_v20n6_80_f0004.png 이미지

Fig. 4. Cyclic performance of VOx thin films for different RF power of 100 watt, 200 watt, and 300 watt, respectively.

References

  1. A. Habib, C. Sou, "Analytical review on the trends and present situation of large-scale sustainable energy storage technology", Eropean Journal of Sustainable Development Research, Vol. 8, Issue 3, No. 31, July, 2018. DOI: https://doi.org/10.20897/ejosdr/86200
  2. K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten, "Sodium-ion battery materials and electrochemical properties reviewed", Advanced. Energy Materials, Vol. 8, No. 1800079, 2018. DOI: https://doi.org/10.1002/aenm.201800079
  3. D. Su, D. Zhou, C. Wang, G. Wang, "Toward high performance lithium-sulfur batteries based on $Li_2S$ cathodes and beyond: status, challenges, and perspectives", Advanced Functional Materials, Vol. 28, No. 1800154, 2018. DOI: https://doi.org/10.1002/adfm.201800154
  4. S. Petnikota, R. Chua, Y. Zhou, E. Edison, M. Srinivasan, "Amorphous vanadium oxide thin films as stable performing cathodes of lithium and sodium-ion batteries", Nanoscale Research Letters, Vol. 13, No. 363, 2018. DOI: https://doi.org/10.1186/s11671-018-2766-0
  5. W. Yang, W. Yang, L. Kong, A. Song, X. Qin, G. Shao, "Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition", Carbon, Vol. 127, pp. 557-567, 2018. DOI: https://doi.org/10.1016/j.carbon.2017.11.050
  6. B. T. O'Callahan, A. C. Jones, J-H. Park. D. H. Cobden, J. M. Atkin, M. B. Raschke, "Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of $VO_2$", Nature Communications, Vol. 6, No. 6849, April, 2015. DOI: http://dx.doi.org/10.1038/ncomms7849
  7. E. Strelcov, Y. Lilach, A. Kolmakov, "Gas sensor based on metal-insulator transition in $VO_2$ nanowire thermistor", Nano Letters, Vol. 9, No. 6, pp. 2322-2326, May, 2009. DOI: https://dx.doi.org/10.1021/nl900676n
  8. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, Z. L. Wang, "External-strain induced insulating phase transition in $VO_2$ nanobeam and its application as flexible strain sensor", Advanced Materials, Vol. 22, pp. 5134-5139, 2010. DOI: http://doi.org/10.1002/adma.201002868
  9. W. Wang, B. Jiang, L. Hu, Z. Lin, J. Hou, S. Jiao, "Single crystalline $VO_2$ nanosheets: A cathode materials for sodium-ion batteries with high rate cycling performance", Journal of Power Sources, Vol. 250, pp. 181-187, 2014. DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.11.016
  10. C. Pei, F. Xiong, J. Sheng. Y. Yin, S. Tan, D. Wang, C. Han, Q. An, L. Mai. "$VO_2$ nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density", ACS Applied Materials and Interfaces, Vol. 9, pp. 17060-17066, 2017. DOI: http://doi.org/10.1021/acsami.7b02480
  11. G. I. Perrov, V. V. Yakovlev, "Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide", Applied Physics Letters, Vol. 81, No. 6, pp. 1023-1025, 2002. DOI: http://dx.doi.org/10.1063/1.1496506
  12. C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S-J. Wen, S. Kasap, "Characterization of vanadium oxide thin films with different stoichiometry using Raman spectroscopy", Thin Solid Films, Vol. 620, pp. 64-69, 2016. DOI: http://dx.doi.org/10.1016/j.tsf.2016.07.082
  13. B. S. Guiton, Q. Gu, A. L. Prieto, M. S. Gudiksen, H. Park, "Single-crystalline vanadium dioxide nanowires with rectangular cross sections", Journal of American Chemistry Society, Vol. 127, pp. 498-499, 2005. DOI: https://doi.org/10.1021/ja045976g
  14. L. Hongwei, L. Junpeng, Z. Minrui, T. S. Hai, S. C. Haur, Z. Xinhai, K. Lin, "Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires", Optics Express, Vol. 22, No. 25, pp. 30748-30755, 2014. DOI: https://doi.org/10.1364/OE.22.030748
  15. N. F. Quackenbush, J. W. Tashman, J. A. Mundy, S. Sallis, H. Paik, R. Misra, J. A. Moyer, J-H. Guo, D. A. Fischer, J. C. Woicik, D. A. Muller, D. G. Schlom, L. F. J. Piper, "Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide", Nano Letters, Vol. 13, pp. 4857-4861, 2013. DOI: https://dx.doi.org/10.1021/nl402716d