DOI QR코드

DOI QR Code

상용전기자동차용 모터-변속기 일체화에 관한 연구

A Study on the Integration of Motor - Transmission for Commercial Electric Vehicle

  • 오세훈 (중앙대학교 기계공학부) ;
  • 염광욱 (한양사이버대학교 기계자동차공학부)
  • Oh, Se-Hoon (Department of Mechanical Engineering, ChungAng University) ;
  • Youm, Kwang-Wook (Department of Mechanical and Automotive Engineering, Hanyang cyber University)
  • 투고 : 2019.03.19
  • 심사 : 2019.06.07
  • 발행 : 2019.06.30

초록

전 세계적으로 자동차 산업에 있어서 현재 배기가스로 인한 대기오염과 화석연료의 에너지자원 고갈의 문제로 인해 배기가스 발생이 전혀 없고 다양한 방법으로 에너지원을 만들 수 있는 전기자동차의 전동 구동부 시스템에 대한 연구가 활발히 진행되고 있다. 이러한 전기 자동차는 차량의 중량에 따라 모터의 용량 및 사양이 달라지는데 그 중 상용전기자동차에 사용하는 고용량의 전기모터는 크기가 크고 중량이 무거워서 제한된 배터리의 용량을 빨리 소비하여 주행거리를 단축시킨다. 이러한 모터의 출력은 일반적으로 고속회전하기 때문에 자동차에 필요한 초기가속능력이 부족하다. 따라서 본 연구에서는 모터의 출력을 변속기를 통하여 감속시켜 차량의 초기가속능력을 높이고 모터의 크기와 중량을 상대적으로 줄였다. 그리고 각각의 분리된 구조를 이루고 있는 구동모터와 변속기를 일체화하여 입 출력을 위한 커넥터의 간소화를 이루고 냉각시스템의 용량도 축소하여 차량을 설계하고 제작하거나 기존차량을 구조변경을 하는데 효과적인 기술을 제시하였다. 또한 모터와 변속기를 일체화하기 위한 스플라인의 설계 및 해석을 통하여 적합성을 증명하였다.

Owing to the present problems of air pollution and fossil fuel exhaustion, ongoing research has been actively focused on developing an electric actuator system that can utilize diverse energy sources without producing any exhaust gas. Since the motors of such electric vehicles generally rotate at a high speed, the initial acceleration capability required for an automobile is insufficient. In this study, the motor output was decelerated by the transmission; the initial acceleration of the vehicle was increased, and the motor size and weight were reduced. The driving motor and transmission, which each form isolated structures, were integrated to simplify the connector for input and output. By reducing the cooling system's capacity, a vehicle was designed and manufactured that represents a structural change in effective technology.

키워드

SHGSCZ_2019_v20n6_306_f0001.png 이미지

Fig. 1. Permanent magnet of double-layer type.

SHGSCZ_2019_v20n6_306_f0002.png 이미지

Fig. 2. Motor heating flow analysis

SHGSCZ_2019_v20n6_306_f0003.png 이미지

Fig. 3. Applying the motor

SHGSCZ_2019_v20n6_306_f0004.png 이미지

Fig. 4. Shift gears mechanism

SHGSCZ_2019_v20n6_306_f0005.png 이미지

Fig. 5. Manufacture the transmission

SHGSCZ_2019_v20n6_306_f0006.png 이미지

Fig. 6. Spline FEM analysis

SHGSCZ_2019_v20n6_306_f0007.png 이미지

Fig. 7. Spline design

SHGSCZ_2019_v20n6_306_f0008.png 이미지

Fig. 8. Manufacture the motor-transmission integral

Table 1. Commercial electric vehicle motor specification

SHGSCZ_2019_v20n6_306_t0001.png 이미지

Table 2. Final design motor specification

SHGSCZ_2019_v20n6_306_t0002.png 이미지

Table 3. cooling water heating property

SHGSCZ_2019_v20n6_306_t0003.png 이미지

Table 4. Calculation of reduction gear ratio

SHGSCZ_2019_v20n6_306_t0004.png 이미지

Table 5. Reduction gears specification

SHGSCZ_2019_v20n6_306_t0005.png 이미지

Table 6. Root safety(SF) and flank safety(SH) according to the RPM

SHGSCZ_2019_v20n6_306_t0006.png 이미지

Table 7. Gear meshing efficiency

SHGSCZ_2019_v20n6_306_t0007.png 이미지

Table 8. Design of spline specification

SHGSCZ_2019_v20n6_306_t0008.png 이미지

참고문헌

  1. Wikipedia, European emission standards, http://en.wikipedia.org/wiki/European_emission_standards#Emission_standards_for_light_commercial_vehicles, 2009.
  2. C. Ma, J. Kang, W. Choi, M. Song, J. Ji and H. Kim, "A comparative study on the power characteristics and control strategies for plug-in hybrid electric vehicles" International Journal of Automotive Technology, vol. 13, No. 3, pp. 505-516, 2012. DOI: http://dx.doi.org/10.1007/s12239-012-0048-x
  3. Kim. J, Kim. N, Hwang. S, Hori. Y and Kim, H, "Motor control of input-split hybrid electric vehicles" International Journal of Automotive Technology, vol. 10, No. 6, pp. 733-742, 2009. DOI: http://dx.doi.org/10.1007/s12239-009-0086-1
  4. Y. L. Chen, S. A. Liu, J. H. Jiang, T. Shang, Y. K. Zhang and W. Wei, "Dynamic analysis of energy storage unit of the hydraulic hybrid vehicle" International Journal of Automotive Technology, vol. 14, No. 1, pp. 101-112, 2013. DOI: http://dx.doi.org/10.1007/s12239-013-0012-4
  5. Boukehili. A, Zhang. Y.T, Zhao. Q, Ni. C.Q, Su. H.F and Huang, G.J, "Hybrid vehicle power management modeling and refinement" International Journal of Automotive Technology, vol. 13, No. 6, pp. 987-998, 2012. DOI: http://dx.doi.org/10.1007/s12239-012-0101-9
  6. Ombach, Grzegorz, "Electromechanical system with IPM motor used in electric or hybrid vehicle" Compel, Vol. 30, No. 1. pp. 137-150, 2011. DOI: http://dx.doi.org/10.1108/03321641111091485
  7. Dehnad, K, "Quality Control, Robust Design and the Taguchi Method" International Biometric Society. Vol. 45, No. 4, pp. 1345, 1989. DOI: http://dx.doi.org/10.2307/2531803
  8. Ribaric, Marijan. S us ters ic, Luka, "Expansions in Terms of Moments of Time-Dependent Moving Charges and Currents" SIAM Journal on Applied Mathematics. Vol.55, No. 3, pp. 593-624, 1995. DOI: http://dx.doi.org/10.1137/S0036139992241972
  9. Zhu, Jing, "Principle and Characteristic of Lorentz Force Propeller" Journal of Electromagnetic Analysis and Applications. Vol. 1, No. 4, pp.229-235, 2009. DOI: http://dx.doi.org/10.4236/jemaa.2009.14034
  10. Shinji Shinnaka, "A new separate-identification method of two stator equivalent core-loss resistances corresponding to hysteresis and eddy-current losses for parallel-type mathematical models of AC motors" Electrical Engineering in Japan. Vol. 143, No. 4, pp. 50-63, 2003. DOI: http://dx.doi.org/10.1002/eej.10152
  11. Belahcen, E. Dlala, K. Fonteyn and M. Belkasim, "A posteriori iron loss computation with a vector hysteresis model" Compel. Vol. 29, No. 6, pp. 1493-1503, 2010. DOI: http://dx.doi.org/10.1108/03321641011078562
  12. Inalpolat. M, Kahraman, "A Dynamic modelling of planetary gears of automatic transmissions" Proceedings of the Institution of Mechanical Engineers. Vol. 222, No. k3, pp. 229-242, 2008. DOI: http://dx.doi.org/10.1243/14644193JMBD138
  13. F. I. Plekhanov, V. S. Kuznetsov, "Deformability of elements of a planetary gear transmission" Russian Engineering Research, Vol. 30, No. 6, pp.557-560, 2010. DOI: http://dx.doi.org/10.3103/S1068798X10060055
  14. W. Shi, C. W Kim, C. W Chung, and H. C Park, "Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model" International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 1, pp.153-159, 2013. DOI: http://dx.doi.org/10.1007/s12541-013-0021-2