DOI QR코드

DOI QR Code

Research on an Engagement Level Underwater Weapon System Model with Neyman-Pearson Detector

Neyman-Pearson 표적 탐지기를 적용한 수중 무기체계 교전수준 모델 개발 연구

  • 조현진 (해군사관학교 전기전자공학과) ;
  • 김완진 ;
  • 김상훈 (해군본부 정책실 대외정책과) ;
  • 양호철 (해군본부 정보작전참모부 부대계획과) ;
  • 이희광 (해군본부 인사참모부 근무행정과)
  • Received : 2019.02.01
  • Accepted : 2019.05.28
  • Published : 2019.06.30

Abstract

This paper introduces the simulation concepts and technical approach of underwater weapon system performance analysis simulator, especially focused on probabilistic target detection concepts. We calculated the signal excess (SE) value using SONAR equation, then derived the probability density function(PDF) for target presence($H_1$) or absence($H_0$) cases, respectively. With the Neyman-Pearson detector criterion, we got the probability of detection($P_D$) while satisfying the given probability of false alarm($P_{FA}$). At every instance of simulation, target detection is decided in the probabilistic perspective. With the proposed detection implementation, we improved the model fidelity so that it could support the tactical decision during the operation.

본 연구에서는 수중 무기체계의 효과도 예측을 위하여 개발한 교전 수준 시뮬레이터에 대해서 표적탐지 여부의 확률적 접근 방법을 적용한 개념 및 그 예시를 소개하고 있다. 소나 방정식에 의해서 산출되는 SE(Signal excess)을 이용하여 표적의 존재 여부($H_0$ 혹은 $H_1$)에 따른 확률 분포 함수(PDF, Probability density function)을 유도하였다. 이후 Neyman-Pearson 탐지기에 따라 $P_{FA}$(Probability of false alarm)을 만족하는 $P_D$(Probablity of detection)을 구하고 탐지 여부를 확률적으로 판단하도록 설계하였다. 표적의 탐지와 관련된 현실적인 접근방법을 도입함으로써 시뮬레이터의 충실도를 높일 수 있었으며, 실험 결과는 전술 구상의 보조 정보로 활용할 수 있을 것이라 예상한다.

Keywords

SMROBX_2019_v28n2_89_f0001.png 이미지

Fig. 1. Collision triangle (Cho 2018)

SMROBX_2019_v28n2_89_f0002.png 이미지

Fig. 3. PD of two types of Sound Source: Omni-directional(Left) and Cardioid(Right) (VM = 0KTS and PFA=0.01%)

SMROBX_2019_v28n2_89_f0003.png 이미지

Fig. 4. PD of two types of Sound Source: Omni-directional(Left) and Cardioid(Right) (VM = 35KTS and PFA=0.01%)

SMROBX_2019_v28n2_89_f0004.png 이미지

Fig. 5. PD of two types of Sound Source: Omni-directional(Left) and Cardioid(Right) (VM = 35KTS and PFA=1%)

SMROBX_2019_v28n2_89_f0005.png 이미지

Fig. 6. Torpedo performance analysis (without evasive maneuver and decoy case)

SMROBX_2019_v28n2_89_f0006.png 이미지

Fig. 7. Torpedo performance analysis (with evasive maneuver and decoy case)

SMROBX_2019_v28n2_89_f0007.png 이미지

Fig. 8. Torpedo performance analysis (use only one anti-torpedo method)

SMROBX_2019_v28n2_89_f0008.png 이미지

Fig. 2. Basic components of an energy detection system (Urick, 1983)

Table 1. Hierarchy of detection problems (Kay, 1998) and research model is corresponding to asterisk(*)

SMROBX_2019_v28n2_89_t0001.png 이미지

References

  1. Cho, Hyunjin (2018). “Engagement Level Simulator Development for Wire-Guided Torpedo Performance Analysis”. Journal of the Korea Society for Simulation, 27(1), 33-38. https://doi.org/10.9709/JKSS.2018.27.1.033
  2. Kang, Eyung W. Radar system analysis, design, and simulation. Artech House, 2008.
  3. Kay, Steven M. "Fundamentals of statistical signal processing, Vol. II: Detection Theory." Signal Processing. Upper Saddle River, NJ: Prentice Hall (1998).
  4. Kim, J. H., Seo, K. M., Lee, T. E., and Choi, B. W. (2018). "Achieving New Insights into Combat Engagement Analysis via Simulation-Based Sequential Experimentation" Military Operations Research, 23(4), 51-80.
  5. Kim, Taekyoo (2014) "System Operational Performance Analysis for Wire-Guided Torpedo" Journal of the Korea Society for Simulation, 23(2), 7-15. https://doi.org/10.9709/JKSS.2014.23.2.007
  6. Ku, B., Y. Lee, J. Park, S. Chung, W. Hong, W. Kim, M. Lim and H. Ko, "Robust ship wake search method in the target evasion environment," Journal of the Korea Institute of Military Science and Technology, Vol.12, No.1, 2009, 8-17.
  7. Hong, W.Y., et al (2017), "A Study on the Effectiveness analysis for a small underwater moving object", Report of Agency for Defence Development, ADDR-417-162346, 2017
  8. Nielsen, Richard O. Sonar signal processing. Artech House, Inc., 1991.
  9. Pak, J.M. (2008) "Effectiveness Analysis of an Acoustic Homing Torpedo", Master Thesis, Korea University
  10. Scharf, Louis L., and Cedric Demeure. Statistical signal processing: detection, estimation, and time series analysis. Vol. 63. Reading, MA: Addison-Wesley, 1991.
  11. Shin, Ji-hwan. (2007). “On the Development of Authoritative Representations of Torpedo Systems for Engagement Level Simulation”. Journal of the Korea Society for Simulation, 16(3), 19-28.
  12. Shin, MyoungIn, H. Cho, J. Lee, J. Lim, S. Lee, W. Kim, W. Kim, W. Hong. (2016). "Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys" Journal of the Korea Society for Simulation, 25(3), 53-63. https://doi.org/10.9709/JKSS.2016.25.3.053
  13. Urick, R.J., Principles of underwater sound 3rd, MacGraw-Hill, 1983
  14. Van Trees, Harry L. Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory. John Wiley & Sons, 2004.