Figure 1. Discretization of the position and velocity space for a D2Q9 lattice.
Figure 2. Viscosity calculation results.
Figure 3. Modified mean squared displacement.
Figure 4. Diffusivity according to Eq. (27).
Figure 5. Concentration coefficient results.
Figure 6. Physical particle contact numbers at
Table 1. Parameters Used in the Simulation
References
- M. Schmitt, M. Baunach, L. Wengeler, K. Peters, P. Junges, P. Scharfer, and W. Schabel, Slot-die processing of lithium-ion battery electrodes-coating window characterization, Chem. Eng. Process., 68, 32-37 (2013). https://doi.org/10.1016/j.cep.2012.10.011
- H. A. Barnes, Shear-thickening ("Dilatancy") in suspensions of non aggregating solid particles dispersed in newtonian liquids, J. Rheol., 33, 329-366 (1989). https://doi.org/10.1122/1.550017
- S. Khandavalli and J. Rothstein, Extensional rheology of shear-thickening nanoparticle dispersions in an aqueous polyethylene oxide solutions, J. Rheol., 58(2), 411-431 (2014). https://doi.org/10.1122/1.4864620
- H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narvaez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20(4), 777-805 (2016). https://doi.org/10.1007/s10596-015-9542-3
- S. Khandavalli, J. A. Lee, M. Pasquali, and J. P. Rothstein, The effect of shear-thickening on liquid transfer from an idealized gravure cell, J. Nonnewton. Fluid Mech., 221, 55-65 (2015). https://doi.org/10.1016/j.jnnfm.2015.03.007
- K. T. Kim and R. E. Khayat, Transient coating flow of a thin non-Newtonian fluid film, Phys. Fluids, 14, 2202-2215 (2002). https://doi.org/10.1063/1.1483306
- T. Tsuda, Coating flows of power-law non-newtonian fluid in slot coating, J. Soc. Rheol. Jpn., 38(4-5), 223-230 (2010). https://doi.org/10.1678/rheology.38.223
- K. M. Beazley, Industrial aqueous suspensions, in: K. Walters (ed.), Rheometry: Industrial Applications, 339-413, Research Studies Press, Chichester UK (1980).
- R. L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions, J. Rheol., 42, 111-123 (1998). https://doi.org/10.1122/1.550884
- R. L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions: III. Necessary conditions for their occurrence in viscometric flows, Adv. Colloid Interface Sci., 17(1), 161-184 (1982). https://doi.org/10.1016/0001-8686(82)80017-1
- M. Yang and E. S. G. Shaqfeh, Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part II: Suspensions at finite concentration, J. Nonnewton. Fluid Mech., 234, 51-68 (2016). https://doi.org/10.1016/j.jnnfm.2016.04.003
- X. Bian, S. Litvinov, M. Ellero, and N. J. Wagner, Hydrodynamic shear thickening of particulate suspension under confinement, J. Nonnewton. Fluid Mech., 213, 39-49 (2014). https://doi.org/10.1016/j.jnnfm.2014.09.003
- Y. Chen, Q. Cai, Z. Xia, M. Wang, and S. Chen, Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions, Phys. Rev. E, 88(1), 013303-1-15 (2013). https://doi.org/10.1103/PhysRevE.88.013303
- M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 31-35, Springer (2007).
- G. V. Krivovichev, Linear Bhatnagar-Gross-Krook equations for simulation of linear diffusion equation by lattice Boltzmann method, Appl. Math. Comput., 325, 102-119 (2018). https://doi.org/10.1016/j.amc.2017.12.027
- L. S. Lin, H. W. Chang, and C. A. Lin, Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU, Comput. Fluids, 80(10), 381-387 (2013). https://doi.org/10.1016/j.compfluid.2012.01.018
- K. Chen, Y. Wang, S. Xuan, and X. Gong, A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid, J. Colloid Interface Sci., 497(1), 378-384 (2017). https://doi.org/10.1016/j.jcis.2017.03.038
- P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29(1), 47-65 (1979). https://doi.org/10.1680/geot.1979.29.1.47
- M. Kuanmin, Y. W. Michael, X. Zhiwei, and C. Tianning, DEM simulation of particle damping, Powder Technol., 142(2), 154-165 (2004). https://doi.org/10.1016/j.powtec.2004.04.031
- W. Smith, D. Melanz, C. Senatore, K. Iagnemma, and H. Peng, Comparison of discrete element method and traditional modeling methods for steady-state wheel-terrain interaction of small vehicles, J. Terramechanic, 56, 61-75 (2014). https://doi.org/10.1016/j.jterra.2014.08.004
- S. Laryea, M. S. Baghsorkhi, J. F. Ferellec, G. R. McDowell, and C. Chen, Comparison of performance of concrete and steel sleepers using experimental and discrete element methods, Transp. Geotech., 1(4), 225-240 (2014). https://doi.org/10.1016/j.trgeo.2014.05.001
- P. P. Prochazka, Application of discrete element methods to fracture mechanics of rock bursts, Eng. Fract. Mech., 71(4), 601-618 (2004). https://doi.org/10.1016/S0013-7944(03)00029-8
- H. P. Zhu and A. B. Yu, A theoretical analysis of the force models in discrete element method, Powder Technol., 161(2), 122-129 (2006). https://doi.org/10.1016/j.powtec.2005.09.006
- I. Klaus, T. Nils, and R. Ulrich, Simulation of moving particles in 3D with the Lattice Boltzmann method, Comput. Math. Appl., 55, 1461-1468 (2008). https://doi.org/10.1016/j.camwa.2007.08.022
- O. Filippova and D. Hanel, Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 219-228 (1998). https://doi.org/10.1006/jcph.1998.6089
- R. Mei, L. S. Luo, and W. Shyy, An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155, 307-330 (1999). https://doi.org/10.1006/jcph.1999.6334
- C. Chang, C. H. Liu, and C. A. Li, Boundary conditions for lattice Boltzmann simulations with complex geometry flows, Comput. Math. Appl., 58(5), 940-949 (2002).
- M. Bouzidi, M. Firdaouss, and P. Lallemand, Momentum transfer of a boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 3452-3459 (2001). https://doi.org/10.1063/1.1399290
- D. R. J. Owen, C. R. Leonardi, and Y. T. Feng, An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries, Int. J. Numer. Methods Eng., 87(1), 66-95 (2011). https://doi.org/10.1002/nme.2985
- L. Verlet, Computer "Experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159(1), 98-103 (1967). https://doi.org/10.1103/PhysRev.159.98
- H. Grubmuller, H. Heller, A. Windemuth, and K. Schulten, Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Simul., 6, 121-142 (1991). https://doi.org/10.1080/08927029108022142
- E. P. Honig, G. J. Roeberse, and P. H. Wiersema, Effect of hydrodynamic interaction on coagulation rate of hydrophobic colloids, J. Colloid Interface Sci., 36, 36-97 (1971).
- S. L. Dance and M. R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow, J. Comput. Phys., 189, 212-238 (2003). https://doi.org/10.1016/S0021-9991(03)00209-2
- O. I. Vinogradova, Drainage of a thin liquid-film confined between hydrophobic surfaces, Langmuir, 11, 2213-2220 (1995). https://doi.org/10.1021/la00006a059
- C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, Hardsphere colloidal dispersions - Viscosity as a function of shear rate and volume fraction, J. Chem. Phys., 83, 4717-4725 (1985). https://doi.org/10.1063/1.448997
- T. Zhang, B. Shi, Z. Guo, Z. Chai, and J. Lu, General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method, Phys. Rev., 85, 016701-1-14 (2012).
- Y. Zong, C. Peng, Z. Guoc, and L. P. Wang, Designing correct fluid hydrodynamics on a rectangular grid using MRT lattice Boltzmann approach, Comput. Math. Appl., 72, 288-310 (2016). https://doi.org/10.1016/j.camwa.2015.05.021
- B. J. Maranzano and N. J. Wagner, The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions, J. Rheol., 45, 1205-1222 (2001). https://doi.org/10.1122/1.1392295
- I. R. Peters, S. Majumdar, and H. M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions, Nature, 532, 214-217 (2016). https://doi.org/10.1038/nature17167
- E. Brown and H. M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions, J. Rheol., 56(4), 875-923 (2012). https://doi.org/10.1122/1.4709423
- A. Sierou and J. F. Brady, Shear-induced self-diffusion in non-colloidal suspensions, J. Fluid Mech., 506, 285-314 (2004). https://doi.org/10.1017/S0022112004008651
- N. Tarantino, J. Y. Tinevez, E. F. Crowell, B. Boisson, R. Henriques, M. Mhlanga, F. Agou, A. Israël, and E. Laplantine, TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures, J. Cell Biol., 204(2), 231-245 (2014). https://doi.org/10.1083/jcb.201307172
- A. Einstein, Eine neue bestimmung der molekldimensionen, Ann. Phys. (Berl.), 324(2), 289-306 (1906). https://doi.org/10.1002/andp.19063240204
- E. Nazockdast and J. F. Morris, Microstructural theory and the rheology of concentrated colloidal suspensions, J. Fluid Mech., 713, 420-452 (2012). https://doi.org/10.1017/jfm.2012.467
- N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today, 62, 27-32 (2009).
- J. Bergenholtz, J. F. Brady, and M. Vicic, The non-Newtonian rheology of dilute colloidal suspensions, J. Fluid Mech., 456, 239-275 (2002). https://doi.org/10.1017/S0022112001007583
- N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today, 62(10), 27-32 (2009). https://doi.org/10.1063/1.3248476
- R. G. Egres, F. Nettesheim, and N. J. Wagner, Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition, J. Rheol., 50(5), 685-709 (2006). https://doi.org/10.1122/1.2213245
- H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys., 68(4), 1259-1273 (1996). https://doi.org/10.1103/RevModPhys.68.1259
- W. Huang, Y. Wu, L. Qiu, C. Dong, J. Ding, and D. Li, Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide, Adv. Condens. Matter Phys., 2015, 734250 (2015).
- N. J. Wagner, E. D. Wetzel, G. Ronald, and J. R. Egres, Shear thickening fluid containment in polymer composites, US Patent 0234572 (2006).