DOI QR코드

DOI QR Code

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Aerial Part of Coriandrum sativum L.

고수(Coriandrum sativum L.) 지상부 추출물의 항산화 및 항염증 활성 효과

  • 난리 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 이창현 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 최유나 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 추병길 (전북대학교 농업생명과학대학 작물생명과학과)
  • Received : 2019.09.24
  • Accepted : 2019.10.23
  • Published : 2019.11.30

Abstract

Coriandrum sativum L., an annual herbaceous plant of Apiaceae family. The present study evaluated the anti-oxidant activities and anti-inflammatory effects of ethanol extracts of C. sativum. The anti-oxidant activities of C. sativum were measured by total contents of polyphenol, flavonoid, DPPH and ABTS radical scavenging and reducing power activity. And anti-inflammatory effects of C. sativum were measured by LPS-induced RAW 264.7 cells. The results showed that the contents of total polyphenol and flavonoid were 76.03 ± 1.36 mg of gallic acid equivalents/g and 182.23 ± 4.32 mg of rutin equivalents/g at concentration 1 mg/mL of C. sativum. The DPPH radical scavenging activity was found to be 52.8% at 500 ㎍/mL. The ABTS radical scavenging activity was shown in 58.3% after exposure to 1,000 ㎍/mL. Reducing power activity was found to be 66.8% at 2,000 ㎍/mL. The inhibitory effect of NO production was found to be 65% concentration 500 ㎍/mL. In the generation quantity of inflammatory cytokines such as TNF-α and IL-1β in cell culture medium, the expression levels of inflammatory proteins in cells were showed decrease with the increase of concentration. Therefore, we suggest that the C. sativum should be a potential source of alternative anti-inflammatory drug with good anti-inflammatory effects.

본 논문은 고수 에탄올 추출물의 항산화 활성 및 항염증 효과를 평가하기 위하여 수행되었다. 총 폴리페놀 및 플라보노이드 함량은 1 mg/mL 농도에서 각각 76.03 ± 1.36 mg of Gallic acid equivalents/g, 182.23±4.32 mg of Rutin equivalents/g으로 나타났고 DPPH와 ABTS radical 소거능은 각각 500 ㎍/mL, 1000 ㎍/mL 농도에서 52.8%, 58.3%의 소거율을 확인하였으며 2000 ㎍/mL 농도에서 환원력을 나타났다. 세포독성 검사 결과, LPS와 함께 처리한 세포에서 고수 추출물 (0-500 ㎍/mL)에 의한 독성이 나타나지 않았고 염증 매개인자인 NO, 염증성 cytokine인 TNF-α 및 IL-1β의 생성량을 농도의존적으로 유의하게 감소시켰다. 또한 염증성 단백질인 iNOS 및 COX-2의 발현 수준을 유의하게 감소시켰고 이런 염증성 단백질 발현을 조절하는 전사인자 NF-κB/MAPK signaling pathway의 활성화 수준도 유의하게 억제시킨 것으로 나타났다. 이와 같이 고수 에탄올 추출물의 항산화 및 항염증 활성을 나타냄으로써 활용 가치가 기능성 식품 및 대체 의약 소재로 이용될 수 있다고 사료된다.

Keywords

References

  1. Azizi, G., S. S.Navabi, A. Al-Shukaili, M. H. Seyedzadeh, R. Yazdani, and A. Mirshafiey. 2015. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos Univ Med J. 15: 305-316. https://doi.org/10.18295/squmj.2015.15.03.002
  2. Aktan, F. 2004. iNOS-mediated nitric oxide production and its regulation. Life Sci. 75: 639-653. https://doi.org/10.1016/j.lfs.2003.10.042
  3. Chae, S. K., G. S. Kang, S. J. Ma, K.W. Bang, and M. W. Oh. 2002. Standard food analysis. Paju Korea. pp. 381-382.
  4. Cha, B. C. and E. H. Lee. 2004. Antioxidant and anti-inflammation activities of Prunus persica tree extracts. Kor J Med Crop Sci. 12: 289-294.
  5. Chaudhry, N. and P. Tariq. 2006. Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak J Pharm Sci. 19: 214-218.9.
  6. Grabowski, P. S., P. K. Wright, R. J. Van’t Hof, M. H. Helfrich, H. Ohshima, S. H. Ralston. 1997. Immunolocalization of inducible nitric oxide synthase in synoviumand cartilage in rheumatoid arthritis and osteoarthritis. Br J Rheumatol. 36: 651-655. https://doi.org/10.1093/rheumatology/36.6.651
  7. Han, J. T. 2006. Development of functional material using the root of Rosa multiflora. Food Ind Nutri. 11: 59-65.
  8. Hou, X. M., F. Yang, W. B. Liu, Z. X. Fu, L. Chen, Z. X. Li, C. Ni, M. Liu, and G. W. Cao. 2016. Signaling pathways that facilitate chronic inflammation-induced carcinogenesis. J Cell Signal. 1: 1-9.
  9. Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature. 444: 860-867. https://doi.org/10.1038/nature05485
  10. Harris, J., M. Hartman, C. Roche, S. G. Zeng, A. O'Shea, F. A. Sharp, E. M. Lambe, E. M. Creagh, D. T. Golenbock, Tschopp, J. H. Kornfeld, K. A. Fitzgerald, and E. C. Lavelle. 2011. Autophagy controls IL-1${\beta}$ secretion by targeting Pro-IL-1${\beta}$ for degradation. J Bio Chem. 286: 9587-9597. https://doi.org/10.1074/jbc.M110.202911
  11. Ishida, M., K. Nishi, N. Kunihiro, H. Onda, S. Nishimotod, and T. Sugahara. 2017. Immunostimulatory effect of aqueous extract of Coriandrum sativum L. seed on macrophages. J Sci Food Aqric. 97: 4727-4736. https://doi.org/10.1002/jsfa.8341
  12. Jayalakshmi, C. P. and J. D. Sharma. 1986. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ Res. 41: 235-238. https://doi.org/10.1016/S0013-9351(86)80185-2
  13. Jang, S. H., E. A. Yu, K. S. Han, S. C. Shin, H. K. Kim, and S. G. Lee. 2008. Changes in total polyphenol contents and DPPH radical scavenging activity of Agrimolia pilosa according to harvest time and various part. Korean Med Plan. 16: 379-401.
  14. Jing, L. L., H. P. Ma, P. C. Fan, R. M. Gao, and Z. P. Jia. 2015. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement Altern Med. 15: 287-299. https://doi.org/10.1186/s12906-015-0820-3
  15. Ju, M. S., H. U. Jeong, H. G. Park, Y. S. Youn, Y. O. Kim, S. Y. Kim, and M. S. Oh. 2010. Anti-nociceptive and anti-inflammatory effects of Geranii Herba. Kor J Herbology. 25: 97-101. https://doi.org/10.6116/KJH.2010.25.3.097
  16. Kaminska, B. 2005. MAPK signaling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 1754: 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  17. Kamel, M., B. J. Mariem, S. Nidhal, B. Olfa, S. Jazia, T. Sonia, B. Iness, J. Iness, K. Sara, L. Ferid, and M. Brahim. 2013. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arabian J Chem. 10: 3176-3183.
  18. Kim, J. S. and K. L. Kim. 2015. Anti-oxidative and Anti-inflammatory Effects of Artemisiae Capillaris Extract. Kor J Aesthet Cosmetol. 13: 805-812.
  19. Kim, G. H., N. Y. Kim, S. H. Kang, and H. J. Lee. 2015. Phytochemicals and antioxidant activity of Codonopsis lanceolate leaves. Kor J Food Sci Tech. 47: 680-685. https://doi.org/10.9721/KJFST.2015.47.5.680
  20. Laroux, F. S., K. P. Pavlick, I. N. Hines, S. Kawachi, H. Harada, S. Bharwani, J. M. Hoffman, and M. B. Grisham. 2001. Role of nitric oxide in inflammation. Acta Physiol. Scand. 173: 113-118. https://doi.org/10.1046/j.1365-201X.2001.00891.x
  21. Lee, H. E., E. O. Kim, M. J. Seo, and S. W. Choi. 2011a. Anti-inflammatory effects of volatile flavor extract from herbal medicial prescriptions including Cnidium officinale Makino and Angelica gigas Nakai. J Soc Cos Sci Kor. 37: 73-80.
  22. Lee, J. H. 2014. Anti-Oxidant and anti-inflammatory effects of Diospyros kaki Thumb leaves extracts. Kor J Aesthet Cosmetol. 12: 719-724.
  23. Lee, H. J., G. N. Lim, M. A. Park, and S. N. Park. 2011b. Antibacterial and antioxidative activity of Lespedeza cuneata G. Don extracts. Kor J Mic Bio. 39: 63-69.
  24. Lu, X. G., M. Li, J. L. Wei, H. X. Guo, Z. J. Bao, J. F. Wang, Z. Wang, Y. Z. Huang and B. C. An. 2017. Heliangin inhibited lipopolysaccharide-induced inflammation through signaling NF-$\kappa$B pathway on LPS-induced RAW 264.7 cells. Bio Phar. 88: 102-108. https://doi.org/10.1016/j.biopha.2017.01.041
  25. Lawrence, T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a001651. https://doi.org/10.1101/cshperspect.a001651
  26. Liu, J., J. Tang, Y. Zuo, Y. Yu, P. Luo, X. Yao, Y. Dong, P. Wang, L. Liu, and H. Zhou. 2016. Stauntoside B inhibits macrophage activation by inhibiting NF-$\kappa$B and ERK MAPK signaling. Pharmacol Res. 111: 303-315. https://doi.org/10.1016/j.phrs.2016.06.022
  27. Mantovani, A., P. Allavena, A. Sica, and F. Balkwill. 2008. Cancer-related inflammation. Nature. 454: 436-444. https://doi.org/10.1038/nature07205
  28. Moynagh, P. N. 2005. The NF-$\kappa$B pathway. J Cell Sci. 118: 4389-4392. https://doi.org/10.1242/jcs.02579
  29. Oyaizu, M. 1999. Studies on products of browning reaction: Antioxidant activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi. 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  30. Popa, C., M. Netea, P. L. C. M. van Riel, J. W. M. van der Meer, and A. F. H. Stalenhoef. 2007. The role of TNF-a in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lip Rese. 48: 751-762. https://doi.org/10.1194/jlr.R600021-JLR200
  31. Roberta, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ATBS redical cation decolorization assay. Free Radic Biol Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Ranganathan, P. V., C. Jayakumar, R. Mohamed1, Z. Dong, and G. Ramesh. 2013. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2 mediated PGE2 production. Kidney Int. 83: 1087-1098. https://doi.org/10.1038/ki.2012.423
  33. Sathishkumar, P., J. Preethi, V. Raji, R. M. Y. Abdull, F. Ameen, S. Suresh, R. Balagurunathan, and T. Palvannan. 2016. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B. 163: 69-76. https://doi.org/10.1016/j.jphotobiol.2016.08.005
  34. Tang, E. L., J. Rajarajeswaran, S. Y. Fung, and M. Kanthimathi. 2013. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med. 13: 347-360. https://doi.org/10.1186/1472-6882-13-347
  35. Velioglu, Y., G. Mazza, L. Gao, and B. Oomach. 1988. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 46: 4113-4117. https://doi.org/10.1021/jf9801973
  36. Yang, Y., X. H. Zhu, and Y. B. Li. 2015. The study on the extraction and antioxidative activity in vitro of flavonoids from coriander. Chi F Addi. 6: 114-119.
  37. Zillich, O. V., U. Schweiggert-Weisz, P. Eisner, and M. Kersher. 2015. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci. 37: 455-464. https://doi.org/10.1111/ics.12218