DOI QR코드

DOI QR Code

Identification of neoantigens derived from alternative splicing and RNA modification

  • Park, Jiyeon (Precision Medicine Research Center, College of Medicine, The Catholic University of Korea) ;
  • Chung, Yeun-Jun (Precision Medicine Research Center, College of Medicine, The Catholic University of Korea)
  • 투고 : 2019.04.23
  • 심사 : 2019.05.09
  • 발행 : 2019.09.30

초록

The acquisition of somatic mutations is the most common event in cancer. Neoantigens expressed from genes with mutations acquired during carcinogenesis can be tumor-specific. Since the immune system recognizes tumor-specific peptides, they are potential targets for personalized neoantigen-based immunotherapy. However, the discovery of druggable neoantigens remains challenging, suggesting that a deeper understanding of the mechanism of neoantigen generation and better strategies to identify them will be required to realize the promise of neoantigen-based immunotherapy. Alternative splicing and RNA editing events are emerging mechanisms leading to neoantigen production. In this review, we outline recent work involving the large-scale screening of neoantigens produced by alternative splicing and RNA editing. We also describe strategies to predict and validate neoantigens from RNA sequencing data.

키워드

참고문헌

  1. Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol 2017;8:1679. https://doi.org/10.3389/fimmu.2017.01679
  2. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019;51:202-206. https://doi.org/10.1038/s41588-018-0312-8
  3. Lee CH, Yelensky R, Jooss K, Chan TA. Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol 2018;39:536-548. https://doi.org/10.1016/j.it.2018.04.005
  4. Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017;550:249-254. https://doi.org/10.1038/nature24041
  5. Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017;27:1843-1858. https://doi.org/10.1101/gr.216721.116
  6. Zhang M, Fritsche J, Roszik J, Williams LJ, Peng X, Chiu Y, et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun 2018;9:3919. https://doi.org/10.1038/s41467-018-06405-9
  7. Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 2018;34:211-224. https://doi.org/10.1016/j.ccell.2018.07.001
  8. Slansky JE, Spellman PT. Alternative splicing in tumors: a path to immunogenicity? N Engl J Med 2019;380:877-880. https://doi.org/10.1056/NEJMcibr1814237
  9. Ben-Aroya S, Levanon EY. A-to-I RNA editing: an overlooked source of cancer mutations. Cancer Cell 2018;33:789-790. https://doi.org/10.1016/j.ccell.2018.04.006
  10. Poulos MG, Batra R, Charizanis K, Swanson MS. Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 2011;3:a000778. https://doi.org/10.1101/cshperspect.a000778
  11. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 2014;24:1774-1786. https://doi.org/10.1101/gr.177790.114
  12. Vitting-Seerup K, Sandelin A. The landscape of isoform switches in human cancers. Mol Cancer Res 2017;15:1206-1220. https://doi.org/10.1158/1541-7786.MCR-16-0459
  13. Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep 2017;20:2215-2226. https://doi.org/10.1016/j.celrep.2017.08.012
  14. Liu Y, Gonzalez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R, et al. Impact of alternative splicing on the human proteome. Cell Rep 2017;20:1229-1241. https://doi.org/10.1016/j.celrep.2017.07.025
  15. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016;164:805-817. https://doi.org/10.1016/j.cell.2016.01.029
  16. Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2018 Jan 29 [Epub]. https://doi.org/10.1093/bib/bby005.
  17. Singh B, Eyras E. The role of alternative splicing in cancer. Transcription 2017;8:91-98. https://doi.org/10.1080/21541264.2016.1268245
  18. Kozlovski I, Siegfried Z, Amar-Schwartz A, Karni R. The role of RNA alternative splicing in regulating cancer metabolism. Hum Genet 2017;136:1113-1127. https://doi.org/10.1007/s00439-017-1803-x
  19. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2016;35:2413-2427. https://doi.org/10.1038/onc.2015.318
  20. Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 2018;23:270-281. https://doi.org/10.1016/j.celrep.2018.03.052
  21. Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H, et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res 2018;28:1111-1125. https://doi.org/10.1101/gr.231951.117
  22. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet 2018;102:11-26. https://doi.org/10.1016/j.ajhg.2017.11.002
  23. Tian J, Wang Z, Mei S, Yang N, Yang Y, Ke J, et al. CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res 2019;47:D909-D916. https://doi.org/10.1093/nar/gky954
  24. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep 2018;23:282-296. https://doi.org/10.1016/j.celrep.2018.01.088
  25. Kahles A, Ong CS, Zhong Y, Ratsch G. SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinformatics 2016;32:1840-1847. https://doi.org/10.1093/bioinformatics/btw076
  26. Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 2018;36:1056-1058. https://doi.org/10.1038/nbt.4239
  27. Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 2012;13:175. https://doi.org/10.1186/gb-2012-13-10-175
  28. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 2016;17:83-96. https://doi.org/10.1038/nrm.2015.4
  29. Hsiao YE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW, et al. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018;28:812-823. https://doi.org/10.1101/gr.231209.117
  30. Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M. RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 2006;7:303-307. https://doi.org/10.1038/sj.embor.7400621
  31. Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 2014;42:D109-D113. https://doi.org/10.1093/nar/gkt996
  32. Picardi E, D'Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 2017;45:D750-D757. https://doi.org/10.1093/nar/gkw767
  33. Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 2016;14:23-31. https://doi.org/10.1038/nmeth.4110
  34. Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-inosine RNA editing in health and disease. Antioxid Redox Signal 2018;29:846-863. https://doi.org/10.1089/ars.2017.7295
  35. Xu X, Wang Y, Liang H. The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev 2018;48:51-56. https://doi.org/10.1016/j.gde.2017.10.009
  36. Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 2018;33:817-828. https://doi.org/10.1016/j.ccell.2018.03.026
  37. Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 2018;23:50-57. https://doi.org/10.1016/j.celrep.2018.03.036
  38. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 2016;8:11. https://doi.org/10.1186/s13073-016-0264-5
  39. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol 2018;29:1030-1036. https://doi.org/10.1093/annonc/mdy022