DOI QR코드

DOI QR Code

Heterotrophic nitrification-aerobic denitrification potential of cyanide and thiocyanate degrading microbial communities under cyanogenic conditions

  • Mekuto, Lukhanyo (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Kim, Young Mo (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Ntwampe, Seteno K.O. (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Mewa-Ngongang, Maxwell (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Mudumbi, John Baptist N. (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Dlangamandla, Nkosikho (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Itoba-Tombo, Elie Fereche (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology) ;
  • Akinpelu, E.A. (Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology)
  • 투고 : 2018.04.13
  • 심사 : 2018.07.26
  • 발행 : 2019.12.27

초록

The impact of free cyanide ($CN^-$) and thiocyanate ($SCN^-$) on the $CN^-$ (CDO) and $SCN^-$ degraders (TDO) to nitrify and denitrify aerobically was evaluated under alkaline conditions. The CDO's were able to nitrify under cyanogenic conditions, achieving $NH_4{^+}-N$ removal rates above 1.66 mg $NH_4{^+}-N.L^{-1}.h^{-1}$, except when $CN^-$ and $SCN^-$ loading was 15 mg $CN^-/L$ and 50 mg $SCN^-.L^{-1}$, respectively, which slightly inhibited nitrification. The TDO's were able to achieve a nitrification rate of 1.59 mg $NH_4{^+}-N.L^{-1}.h^{-1}$ in the absence of both $CN^-$ and $SCN^-$, while the presence of $CN^-$ and $SCN^-$ was inhibitory, with a nitrification rates of 1.14 mg $NH_4{^+}-N.L^{-1}.h^{-1}$. The CDO's and TDO's were able to denitrify aerobically, with the CDO's obtaining $NO_3{^-}-N$ removal rates above 0.67 mg $NO_3{^-}-N.L^{-1}.h^{-1}$, irrespective of the tested $CN^-$ and $SCN^-$ concentration range. Denitrification by the TDO's was inhibited by $CN^-$, achieving a removal rate of 0.46 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ and 0.22 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ when $CN^-$ concentration was 10 and 15 mg $CN^-.L^{-1}$, respectively. However, when the CDO's and TDO's were co-cultured, the nitrification and aerobic denitrification removal rates were 1.78 mg $NH_4{^+}-N.L^{-1}.h^{-1}$ and 0.63 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ irrespective of $CN^-$ and $SCN^-$ concentrations.

키워드

참고문헌

  1. Johnson CA. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem. 2015;57:194-205. https://doi.org/10.1016/j.apgeochem.2014.05.023
  2. Yao S, Ni J, Ma T, Li C. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour. Technol. 2013;139:80-86. https://doi.org/10.1016/j.biortech.2013.03.189
  3. Joo HS, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J. Biosci. Bioeng. 2005;100:184-191. https://doi.org/10.1263/jbb.100.184
  4. Chen Q, Ni J. Heterotrophic nitrification - Aerobic denitrification by novel isolated bacteria. J. Ind. Microbiol. Biotechnol. 2011;38:1305-1310. https://doi.org/10.1007/s10295-010-0911-6
  5. Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP. The characteristics of a novel heterotrophic nitrification - Aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 2012;108:35-44. https://doi.org/10.1016/j.biortech.2011.12.139
  6. Zhang J, Wu P, Hao B, Yu Z. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 2011;102:9866-9869. https://doi.org/10.1016/j.biortech.2011.07.118
  7. Chen P, Li J, Li QX, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour. Technol. 2012;116:266-270. https://doi.org/10.1016/j.biortech.2012.02.050
  8. Liu Y, Wang Y, Li Y, An H, Lv Y. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16. Chinese J. Chem. Eng. 2015;23:827-834. https://doi.org/10.1016/j.cjche.2014.04.005
  9. Kim YM, Park D, Lee DS, Park JM. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J. Hazard. Mater. 2008;152:915-921. https://doi.org/10.1016/j.jhazmat.2007.07.065
  10. Mekuto L, Ntwampe SKO, Mudumbi JBN, Akinpelu EA, Mewa-Ngongang M. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities. Data Brief 2017;13:738-741. https://doi.org/10.1016/j.dib.2017.06.049
  11. Mekuto L, Alegbeleye OO, Ntwampe SKO, Ngongang MM, Mudumbi JB, Akinpelu EA. Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions. 3 Biotech. 2016;6:173.
  12. Mekuto L, Ntwampe SKO, Jackson VA. Biodegradation of free cyanide using Bacillus sp. consortium dominated by Bacillus Safensis, Lichenformis and Tequilensis strains: A bioprocess supported solely with whey. J. Bioremediate. Biodegrad. 2013;S18:004.
  13. Santos BAQ, Ntwampe SKO, Doughari JH. Continuous biotechnological treatment of cyanide contaminated waters by using a cyanide resistant species of Aspergillus awamori. In: Environmental biotechnology. Rijeka; INTECH; 2013. Ch. 06. p. 123-146.
  14. Akcil A, Mudder T. Microbial destruction of cyanide wastes in gold mining: Process review. Biotechnol. Lett. 2003;25:445-450. https://doi.org/10.1023/A:1022608213814
  15. Mekuto L, Ntwampe SKO, Jackson VA. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: Optimisation using response surface methodology. Environ. Sci. Pollut. Res. 201;22:10434-10443.
  16. Katayama Y, Narahara Y, Inoue Y, Amano F, Kanagawa T, Kuraishi H. A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J. Biol. Chem. 1992;267:9170-9175. https://doi.org/10.1016/S0021-9258(19)50404-5
  17. Chaudhari A, Kodam K. Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl. Microbiol. Biotechnol. 2010;85:1167-1174. https://doi.org/10.1007/s00253-009-2299-7
  18. Jeong YS, Chung JS. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers. Process Biochem. 2006;41:701-707. https://doi.org/10.1016/j.procbio.2005.09.004
  19. Akcil A. Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnol. Adv. 2003;21:501-511. https://doi.org/10.1016/S0734-9750(03)00099-5
  20. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 2001;67:528-538. https://doi.org/10.1128/AEM.67.2.528-538.2001
  21. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG. Anaerobic growth of the haloalkaliphilic denitrifying sulfur- oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 2004;150:2435-2442. https://doi.org/10.1099/mic.0.27015-0
  22. Neufeld R, Greenfield J, Rieder B. Temperature, cyanide and phenolic nitrification inhibition. Water Res. 1986;20:633-642. https://doi.org/10.1016/0043-1354(86)90028-X
  23. Robertson LA, Van Niel EW, Torremans RA, Kuenen JG. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988;54:2812-2818. https://doi.org/10.1128/AEM.54.11.2812-2818.1988
  24. Gupta AB. Thiosphaera pantotropha: A sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme Microb. Technol. 1997;21:589-595. https://doi.org/10.1016/S0141-0229(97)00070-7
  25. Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 2003;37:1371-1377. https://doi.org/10.1016/S0043-1354(02)00475-X
  26. Strous M, Van Gerven E, Zheng P, Kuenen JG, Jetten MSM. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res. 1997;31:1955-1962. https://doi.org/10.1016/S0043-1354(97)00055-9
  27. Koren DW, Gould WD, Bedard P. Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy 2000;56:127-144. https://doi.org/10.1016/S0304-386X(99)00088-2
  28. Robertson LA, Kuenen JG. Aerobic denitrification - Old wine in new bottles? Antonie van Leeuwenhoek 1984;50:525-544. https://doi.org/10.1007/BF02386224
  29. Chen F, Xia Q, Ju LK. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD (P) H fluorescence. Appl. Environ. Microbiol. 2003;69:6715-6722. https://doi.org/10.1128/AEM.69.11.6715-6722.2003
  30. Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou Z, Shoun H. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Microbiol. 2003;69:3152-3157. https://doi.org/10.1128/AEM.69.6.3152-3157.2003
  31. Ishii S, Song Y, Rathnayake L, et al. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ. Microbiol. 2014;16:3168-3180. https://doi.org/10.1111/1462-2920.12458
  32. He T, Li Z, Sun Q, Xu Y, Ye Q. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour. Technol. 2016;200:493-499. https://doi.org/10.1016/j.biortech.2015.10.064
  33. Mpongwana N, Ntwampe SKO, Mekuto L, Akinpelu EA, Dyantyi S, Mpentshu Y. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions. Water Sci. Technol. 2016;73:2168-2175. https://doi.org/10.2166/wst.2016.070
  34. Kim YM, Lee DS, Park C, Park D, Park JM. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process. Water Res. 2011;45:1267-1279. https://doi.org/10.1016/j.watres.2010.10.003

피인용 문헌

  1. Sustainable Approach to Eradicate the Inhibitory Effect of Free-Cyanide on Simultaneous Nitrification and Aerobic Denitrification during Wastewater Treatment vol.11, pp.21, 2019, https://doi.org/10.3390/su11216180
  2. Decomposition of Cyanide from Gold Leaching Tailingsby Using Sodium Metabisulphite and Hydrogen Peroxide vol.2020, 2019, https://doi.org/10.1155/2020/5640963
  3. Ammonia, thiocyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater vol.243, 2020, https://doi.org/10.1016/j.chemosphere.2019.125395
  4. Comparative methods for predicting cyanide pollution in artisanal small-scale gold mining catchment by using logistic regression and kriging with GIS vol.12, pp.3, 2019, https://doi.org/10.1080/20421338.2020.1734325
  5. Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment vol.27, pp.33, 2020, https://doi.org/10.1007/s11356-020-10162-y
  6. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13 vol.776, 2019, https://doi.org/10.1016/j.scitotenv.2021.145939