DOI QR코드

DOI QR Code

Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models

  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University) ;
  • Lee, Seo-Yun (Department of Physics, Kangwon National University)
  • Received : 2018.05.29
  • Accepted : 2018.07.28
  • Published : 2019.12.27

Abstract

Mass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel. However, the high cost of nutrients is a major limitation. In this study, corncob extract (CCE) was used as an inorganic and organic nutrient source for the mass cultivation of Chlorella vulgaris (C. vulgaris). Chemical composition analysis of CCE revealed that it contained sufficient nutrients for mixotrophic cultivation of C. vulgaris. The highest specific grow rate of C. vulgaris was obtained at pH of 7-8, temperature of $25-30^{\circ}C$, and CCE amount of 5 g/L. In the analysis using various growth models, Luong model was found to be the most suitable empirical formula for mass cultivation of C. vulgaris using CCE. Analysis of biomass and production of triacyglycerol showed that microalgae grown in CCE medium produced more than 17.23% and 3% more unsaturated fatty acids than cells cultured in Jaworski's Medium. These results suggest that growing microalgae in CCE-supplemented medium can increase lipid production. Therefore, CCE, agricultural byproduct, has potential use for mass cultivation of microalgae.

Keywords

References

  1. EIA. Short-Term Energy Outlook (STEO), U.S. Energy Information Administration. 2017: 06.
  2. Choi HJ. Effect of acorn powder on the biomass productivity of microalgae. J. Korean Soc. Water Environ. 2015;31:134-141. https://doi.org/10.15681/KSWE.2015.31.2.134
  3. Choi HJ, Lee JM. Application of saccharified acorn-starch for biomass and lipid accumulation of microalgae. J. Korean Soc. Water Environ. 2016;32:197-204. https://doi.org/10.15681/KSWE.2016.32.2.197
  4. Choi HJ. Dairy wastewater treatment using microalgae for potential biodiesel application. Environ. Eng. Res. 2016;21:393-400. https://doi.org/10.4491/eer.2015.151
  5. Abbreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixotropic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012;118:61-66. https://doi.org/10.1016/j.biortech.2012.05.055
  6. Gupta PL, Lee SM, Choi HJ. Integration of microalgae cultivation system for wastewater remediation and sustainable biomass production. World J. Microbiol. Biotechnol. 2016;32:1-11. https://doi.org/10.1007/s11274-015-1971-6
  7. Heredia-Arroyo T, Wei W, Ruan R, Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg. 2044;35:2245-2253. https://doi.org/10.1016/j.biombioe.2011.02.036
  8. Choi HJ. Application of corncob for treatment of Cu(II) in aqueous solution. KSWST J. Water Treat. 2017;25:61-72. https://doi.org/10.17640/KSWST.2017.25.2.61
  9. FAO, FAO Cereal Supply and Demand Brief. 2016.
  10. Li H, Dai Q, Ren J, et al. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr. Polym. 2016;136: 203-209. https://doi.org/10.1016/j.carbpol.2015.09.045
  11. Zhao Y, Cao W, Wang Z, Zhang B, Chen K, Ouyang P. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells. Bioresour. Technol. 2016;202:152-157. https://doi.org/10.1016/j.biortech.2015.12.002
  12. Choi HJ. Inhibition of the growth of harmful cyanobacterial blooms, Microcystis Aeruginosa using caffeine. KSWST J. Water Treat. 2016;24:111-122. https://doi.org/10.17640/KSWST.2016.24.5.111
  13. Choi HJ. Removal of Microcystis aeruginosa using pine needle extracts. J. Korean Soc. Water Environ. 2017;33:8-14. https://doi.org/10.15681/KSWE.2017.33.1.8
  14. Gowdhaman D, Ponnusami V. Production and optimization of xylooligosaccarides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int. J. Biol. Macromol. 2015;79:595-600. https://doi.org/10.1016/j.ijbiomac.2015.05.046
  15. Mitra D, Leenwen JV, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012;1:40-48. https://doi.org/10.1016/j.algal.2012.03.002
  16. Junying ZHU, Junfeng RONG, Baoning ZONG. Factors in mass cultivation of microalgae for biodiesel. Chinese J. Catal. 2013;34:80-100. https://doi.org/10.1016/S1872-2067(11)60497-X
  17. Wang H, Zhang W, Chen L, Wang J, Liu T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013;128:745-750. https://doi.org/10.1016/j.biortech.2012.10.158
  18. Ashokkumar V, Rengasamy R, Deepalakshmi S, Sivalingam A, Sivakumar P. Mass cultivation of microalgae and extraction of total hydrocarbons: A kinetic and thermodynamic study. Fuel 2014;119:308-312. https://doi.org/10.1016/j.fuel.2013.11.062
  19. Jankowska E, Sahu AK, Oleskowicz-Popiel P. Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sust. Energ. Rev. 2017;75:692-709. https://doi.org/10.1016/j.rser.2016.11.045
  20. Gupta PL, Lee SM, Choi HJ. A mini review: Photobio-reactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015;31:1409-1417. https://doi.org/10.1007/s11274-015-1892-4
  21. Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  22. Liang Y, Sarkany N, Cui Y, Blackburn JM. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 2010;101:6745-6750. https://doi.org/10.1016/j.biortech.2010.03.087
  23. Choi HJ, Lee SM. Biomass and oil content of microalgae under mixotrophic conditions. Environ. Eng. Res. 2015;20:25-32. https://doi.org/10.4491/eer.2014.043
  24. Choi HJ, Yu SW. Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol. Biotechnol. Equip. 2015;29:506-513. https://doi.org/10.1080/13102818.2015.1013988
  25. Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG. Effects of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic cultures. Food Technol. Biotechnol. 2013;51:62-69.
  26. Lin TS, Wu JY. Effect of carbon source on growth and lipid accumulation of newly isolated microalga cultured under mixotrophic condition. Bioresour. Technol. 2015;184:100-107. https://doi.org/10.1016/j.biortech.2014.11.005
  27. Park WK, Moon MH, Kwak MS, et al. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: Increased production of biomass and FAMEs. Bioresour. Technol. 2014;171:343-349. https://doi.org/10.1016/j.biortech.2014.08.109
  28. Salati S, D'Imporzano G, Menin B, et al. Mixptrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour. Technol. 2017;230:82-89. https://doi.org/10.1016/j.biortech.2017.01.030
  29. Yeh KL, Chang JS. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 2012;105:120-127. https://doi.org/10.1016/j.biortech.2011.11.103
  30. Cheah WY, Ling TC, Show PL, Juan JC, Chang JS, Lee DJ. Cultivation in wastewaters for energy: A microalgae platform. Appl. Energ. 2016;179:609-625. https://doi.org/10.1016/j.apenergy.2016.07.015
  31. Baldev E, Mubarakali D, Saravanakumar K, et al. Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew. Energ. 2018;123:486-498. https://doi.org/10.1016/j.renene.2018.02.032

Cited by

  1. Assessment of Sludge Reduction and Biogas Potential from Anaerobic Co-digestion Using an Acidogenically Fermented Fishery Byproduct with Various Agricultural Wastes vol.231, pp.7, 2019, https://doi.org/10.1007/s11270-020-04720-w
  2. Agricultural biowaste, rice bran, as carbon source to enhance biomass and lipid production: analysis with various growth rate models vol.82, pp.6, 2020, https://doi.org/10.2166/wst.2020.342
  3. De novo transcriptome analysis of Chlorella sorokiniana : effect of glucose assimilation, and moderate light intensity vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74410-4