Effects of Situation Awareness and Decision Making on Safety, Workload and Trust in Autonomous Vehicle Take-over Situations

자율주행 자동차의 제어권 전환상황에서 상황인식 및 의사결정 정보 제공이 운전자에게 미치는 영향

  • Received : 2018.12.17
  • Accepted : 2019.04.05
  • Published : 2019.05.31

Abstract

Take-over requests in semi-autonomous cars must be handled properly in the case of road obstacles or curved roads in order to avoid accidents. In these situations, situation awareness and appropriate decision making are essential for distracted drivers. This study used a driving simulator to investigate the components of auditory-visual information systems that affect safety, workload, and trust. Auditory information consisted of either voice guidance providing situation awareness for the take-over or a beep sound that only alerted the driver. Visual information consisted of either a screen showing how to maneuver the vehicle or only an icon indicating a take-over situation. By providing auditory information that increased situation awareness and visual information that aided decision making, trust and safety increased, while workload decreased. These results suggest that the levels of situation awareness and decision making ability affect trust, safety, and workload for drivers.

반자율 주행상황은 급커브나 도로 장애물과 같이 차량이 제어할 수 없는 상황에서 제어권 전환이 요청되며, 이때 운전자가 수동주행으로 전환하지 못한다면 심각한 사고가 발생할 수 있다. 운전자는 다른 과업으로 분산된 주의를 도로 환경으로 이전하고 도로상황 인식 후 전방의 특정 상황에 적절한 반응을 해야한다. 이를 위해서 상황인식과 의사결정이 필수적이다. 상황인식과 의사결정을 돕는 시청각 메시지 제공 여부에 따른 운전자의 안전감과 인지부하, 신뢰도의 효과를 알아보기 위해 시뮬레이터를 활용한 실험을 진행하였다. 실험은 $2{\times}2$ 피험자간 설계로 구성하였다. 상황인식 정보를 제공하는 경우, 음성안내음으로 제어권 전환 요청이 일어나는 이유를 제공하였고, 제공하지 않는 경우 비프음으로 제어권 전환을 요청하는 알람만 제시되었다. 의사결정 정보는 전방의 도로 상황에 어떻게 대응하여 운전해야 하는지 운전 방법에 대한 예시를 시각유형으로 제공하거나, 예시 없이 제어권 전환 요청 아이콘만 제공하는 것으로 구분하였다. 그 결과, 안전감, 인지부하, 신뢰도 모두 상황인식 정보와 의사결정 정보를 제공하였을 때 효과가 있는 것으로 나타났다. 특히 인지부하의 경우 의사결정 정보와 상황인식 정보를 포함하지 않은 경우 인지부하가 가장 높았으며, 모두 포함한 경우 인지부하가 가장 낮은 것으로 나타났다. 이 연구는 반자율주행 차량에서 운전자의 상황인식과 의사결정을 돕는 정보구성의 효과를 알아보았다는 데에 의의가 있다.

Keywords

References

  1. SAE International. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. J3016. Warrendale, PA. 2014.
  2. Pfleging, B., Rang, M. and Broy, N. Investigating User Needs for Non-Driving-Related Activities During Automated Driving. Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia. Rovaniemi, Finland. pp. 91-99. 2016.
  3. Campbell, J. L., Brown, J. L., Graving, J. S., Richard, C. M., Lichty, M. G., Bacon, L. P. and Sanquist, T. Human factors design guidance for level 2 and level 3 automated driving concepts (Report No. DOT HS 812 555). Washington, DC. National Highway Traffic Safety Administration. 2018.
  4. Zeeb, K., Buchner, A. and Schrauf, M. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accident Analysis & Prevention. 92. Elsevier. pp. 230-239. 2016. https://doi.org/10.1016/j.aap.2016.04.002
  5. 김동구, 김광순, 채찬병, 김선우, 이상현. V2X 기술 동향. 한국통신학회지(정보와통신). 34(6). 한국통신학회. pp. 11-19. 2017.
  6. 한국정보통신기술협회. 정보통신용어사전: 차량.사물 통신. 車輛事物通信. Vehicle to Everything communication, V2X communication. http://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=0764563 2019.2.4.
  7. 장재득, 김태중. 자율주행차량을 위한 밀리미터파 무선통신 기반 차량 사물 통신 기술. 주간기술동향. 1810호. 정보통신기술진흥센터. pp. 2-13. 2017.
  8. 삼성뉴스룸. "2019년 삼성전자는"...CES 2019에서 주목 할 만한 5가지. https://news.samsung.com/kr/?p=387910 2019.2.5.
  9. Jakus, G., Dicke, C. and Sodnik, J. A user study of auditory, head-up and multi-modal displays in vehicles. Applied Ergonomics. 46(Part A). Elsevier. pp. 184-192. 2015. https://doi.org/10.1016/j.apergo.2014.08.008
  10. Naujoks, F., Mai, C. and Neukum, A. The effect of urgency of take-over requests during highly automated driving under distraction conditions. Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics AHFE. Krakow, Poland. 2014.
  11. Mackenzie, I. S. Human-Computer Interaction: An Empirical Research Perspective. Waltham, MA. USA. Morgan Kaufmann/Elsevier. 2013.
  12. CogniFit. Reaction Time: Cognitive Ability-Neuropsychology. https://www.cognifit.com/science/cognitive-skills/response-time November 12. 2018.
  13. Lorenz, L., Kerschbaum, P., Hergeth, S., Gold, C. and Radlmayr, J. Vom Dual-Task zum Sequential-Task Paradigma. In: TUVTagungFahrerassistenz. Munchen, Germany. 2015.
  14. Horrey, W. J., Lesch, M. F. and Garabet, A. Dissociation between driving performance and drivers' subjective estimates of performance and workload in dual-task conditions. Journal of Safety Research. 40(1). Elsevier. pp. 7-12. 2009. https://doi.org/10.1016/j.jsr.2008.10.011
  15. Koppel, S., Charlton, J., Fildes, B. and Fitzharris, M. How important is vehicle safety in the new vehicle purchase process? Accident Analysis and Prevention. 40(3). Elsevier. pp. 994-1004. 2008. https://doi.org/10.1016/j.aap.2007.11.006
  16. Choi, J. K. and Ji, Y. G. Investigating the importance of trust on adopting an autonomous vehicle. International Journal of Human-Computer Interaction. 31(10). Taylor & Francis. pp. 692-702. 2015. https://doi.org/10.1080/10447318.2015.1070549
  17. Endsley, M. R. Toward a theory of situation awareness in dynamic systems. Human Factors. 37(1). Sage Publisher. pp. 32-64. 1995. https://doi.org/10.1518/001872095779049543
  18. Adam, E. C. Fighter cockpits of the future. In Proceedings of 1993 IEEE/AIAA 12th Digital Avionics Systems Conference. Fort Worth, USA. pp. 318-323. 1993.
  19. De Winter, J. C., Martens, M. H. and Stanton, N. A. Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour. 27(Part B). Elsevier. pp. 196-217. 2014. https://doi.org/10.1016/j.trf.2014.06.016
  20. Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L. and Nass, C. Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. International Journal on Interactive Design and Manufacturing. 9(4). Springler Verlag. pp. 269-275. 2015. https://doi.org/10.1007/s12008-014-0227-2
  21. Naujoks, F., Grattenthaler, H., Neukum, A., Weidl, G. and Petrich, D. Effectiveness of advisory warnings based on cooperative perception. IET IntelligentTransport System. 9(6). Institution of Engineering and Technology. pp. 606-617. 2015. https://doi.org/10.1049/iet-its.2014.0190
  22. Wang, Y. and Ruhe, G. The cognitive process of decision making. International Journal of Cognitive Informatics and Natural Intelligence. 1(2). Idea Group Inc. pp. 73-85. 2007. https://doi.org/10.4018/jcini.2007040105
  23. Wright, P. The harassed decision maker: Time pressures, distractions, and the use of evidence. Journal of Applied Psychology. 59(5). American Psychological Association. pp. 555-561. 1974. https://doi.org/10.1037/h0037186
  24. Wickens, C. D., Hollands. J. G., Banbury, S. and Parasuraman, R. 공학심리와인간수행(4th ed.). 서울:시그마프레스. 2017.
  25. Walch, M., Sieber, T., Hock, P., Baumann, M. and Weber, M. Towards Cooperative Driving: Involving the Driver in an Autonomous Vehicle's Decision Making. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, USA. pp. 261-268. 2016
  26. Gonzalez, C. Task workload and cognitive abilities in dynamic decision making. Human Factors and Ergonomics. 47(1). Sage Publications. pp. 92-101. 2005. https://doi.org/10.1518/0018720053653767
  27. Eriksson, A., Petermeijer, S. M., Zimmermann, M., de Winter, J. C. F., Benglar, K. J. and Stanton, N. A. Rolling out the red (and green) carpet: supporting driver decision making in automation-to-manual transitions. IEEE Transactions on Human-Machine Systems. Institute of Electrical and Electronics Engineers. 2017.
  28. Maulsby, D., Greenberg, S. and Mander, R. Prototyping an intelligent agent through Wizard of Oz. In Proceedings of the INTERACT'93 and CHI'93 Conference on Human factors in Computing Systems. ACM. pp. 277-284. 1993.
  29. Altendorf, E., Schreck, C. and Flemisch, F. A new method and results for analyzing decision-making processes in automated driving on highways. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2016 International Conference on Human Factors in Transportation. Florida, USA. pp. 571-583. 2016.
  30. Jian, J. Y., Bisantz, A. M. and Drury, C. G. Foundations for an empirically determined scale of trust in automated systems. International Journal of Cognitive Ergonomics. 4(1). Taylor & Francis. pp. 53-71. 2000. https://doi.org/10.1207/S15327566IJCE0401_04
  31. NASA Ames Research Center. NASA Task Load Index (TLX): Paper and Pencil Package. http://humansystems.arc.nasa.gov/groups/TLX/dow nloads/TLX_pappen_manual.pdf February 1. 2019
  32. Hart, S. G. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles, CA. 50(9). Sage Publications. pp. 904-908. 2006.
  33. Rhiu, I., Kwon, S. H., Bahn, S. W., Yun, M. W and Yu, W. Y. Research Issues in Smart Vehicles and Elderly Drivers: A Literature Review. International Journal of Human-Computer Interaction. 31(10). Taylor & Francis. pp. 635-666. 2015. https://doi.org/10.1080/10447318.2015.1070540