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The usage of controlled biomedical vocabularies is the cornerstone that enables seamless 
interoperability when using a common data model across multiple data sites. The Observa-
tional Health Data Science and Informatics (OHDSI) initiative combines over 100 controlled 
vocabularies into its own. However, the OHDSI vocabulary is limited in the sense that it 
combines multiple terminologies and does not provide a direct way to link them outside of 
their own self-contained scope. This issue makes the tasks of enriching feature sets by using 
external resources extremely difficult. In order to address these shortcomings, we have cre-
ated a linked data version of the OHDSI vocabulary, connecting it with already established 
linked resources like bioportal, bio2rdf, etc. with the ultimate purpose of enabling the in-
teroperability of resources previously foreign to the OHDSI universe. 

Keywords: clinical informatics, common data model, controlled vocabularies, linked open 
data, RDF, semantic web 
Availability: The resource described in this article is available in two different ways: fully 
constructed RDF graph (GRAPHcompressed files), https://github.com/thepanacealab/OHD-
SI2RDF; scripts to generate RDF graph, https://github.com/thepanacealab/OHDSI2RDF. 
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Introduction 

The Observational Health Data Science and Informatics (OHDSI) is a world-wide initia-
tive, which over the course of five years has managed to bring groups of researchers all over 
the world together in converting their clinical patient data (electronic health records, 
claims, clinical registries) into the Observational Medical Outcomes Partnership (OMOP) 
common data model (CDM). This initiative has built a large set of publicly available tools 
which allow researchers to standardize the way they build patient cohorts, characterize 
their data [1], perform large scale patient level prediction studies [2], and perform elec-
tronic phenotyping [3]. In just a few years the OHDSI initiative has managed to perform 
large-scale studies involving over 200 million patients [4], answer drug safety questions by 
analyzing the association of the anticonvulsant levetiracetam with increased risk for an-
gioedema in 10 international databases [5], and has characterized the effectiveness of sec-
ond-line treatment of type 2 diabetes after initial therapy with metformin in over 246 mil-
lion patients [6]. All of these massive studies have been made possible thanks to the use of 
a CDM and a standardized vocabulary. This strength becomes a weakness as the vocabu-
lary standardizes multiple external vocabularies, ontologies and term sets, such as 
SNOMED, RxNorm, MeSH, and 90+ others, but it does not provide an easy way to link 
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them to additional resources such as the Unified Medical Language 
System (UMLS) [7] and other linked open data resources like 
Bio2rdf [8] and BioPortal [9]. During our time at the Biomedical 
Link Data Hackathon 5 in Kashiwa, Japan we developed the first at-
tempt to create an RDF version of the OHDSI vocabulary with 
linkages to UMLS and BioPortal. 

Methods 

In order to link the OHDSI vocabulary with UMLS, we will lever-
age Ananke [10], a resource built for the mapping of UMLS Con-
cept Unique Identifiers (CUIs) into OHDSI concept_id’s, which 
are the unique identifiers assigned to all concepts in the vocabulary. 
This will allow us to use BioPortals URI’s for the CUIs and make 
the necessary connections when using their SPARQL endpoints 
for federated queries. All other Python 2.7 code just iterates 
through the vocabulary concepts, find proper UMLS matches and 
writes out each entry using a predefined schema. The conversion 
process assumes the OHDSI vocabulary files are in the same folder, 
as well as the Ananke mappings. If the researcher does not have a 
full copy of the OHDSI vocabulary, we provide an already built 
RDF graph for Vocabulary version v5.0 11-FEB-19. 

Results and Discussion 

The RDF conversion results in a total of 24 million triples and takes 
around 15 minutes. Our resource links a total of 861,732 OHDSI 
concept_id's from SNOMED, 286,256 concept_id's from Rx-
NORM, 109,706 concept_id's from ICD10, and 22,029 concept_
id's from ICD9, all linked directly to bioportal. We also include 

1,321,986 mappings to UMLS via Ananke [10]. 
Our initial goals for this resource were to bring into the OHDSI 

context semantic enrichment of longitudinal clinical study data, as 
it has been shown to be quite effective in the past [11,12]. Our par-
ticular practical application of interest is taking advantage of the re-
source for electronic phenotyping purposes. As authors of the Au-
tomated PHenotype Routine for Observational Definition, Identi-
fication, Training and Evaluation (APHRODITE) R package [3], 
our goals were as follows. 

(1) Be able to expand and enrich our feature sets for phenotyp-
ing. With one of the main feature spaces of APHRODITE being 
clinical narratives, these are annotated using the OHDSI vocabu-
lary. Having a linked version of it will allow us to expand any partic-
ular feature domain with other linked resources to SNOMEDCT, 
RxNORM, etc. Fig. 1 shows a sample query were we expand the 
SNOMED concept for “Type 2 diabetes mellitus” with all its avail-
able parents in BioPortal via a federated query. 

(2) One of the outputs of APHRODITE, besides a machine 
learning model for the target phenotype, is a list of relevant features 
that add interpretability to any model. This list of features covers 
the most important domains in the OHDSI CDM and vocabulary. 
We want to be able to produce this list as a linked resource that will 
allow researchers to enhance their understanding by being able to 
semantically link them to other resources like the Human Pheno-
type Ontology [13] among others. 

We believe that such interoperability will enable other research-
ers to generate enhanced evidence by linking outside of the OHDSI 
CDM and vocabulary with additional resources available, such as 
phenotype annotations from PubMed abstracts automatically [14], 
provide extra context for word embeddings models built from clini-

Fig. 1. Sample federated SPARQL query to retrieve parent elements for a specific SNOMED concept.
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cal narratives [15], which in theory can help the embeddings be 
more specific by providing additional context [16], and many addi-
tional applications. This resource brings us one step closer to enrich 
EHR, claims, and registry patient data with the world of linked 
open data. 
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