DOI QR코드

DOI QR Code

펄스도금법을 이용한 고내마모성 로듐 도금층 형성에 관한 연구

Electroplating of High Wear Resistant Rhodium using Pulse Current Plating Method

  • 이서향 (홍익대학교 신소재공학과) ;
  • 이재호 (홍익대학교 신소재공학과)
  • Lee, Seo-Hyang (Dept. of Materials Science and Engineering, Hongik University) ;
  • Lee, Jae-Ho (Dept. of Materials Science and Engineering, Hongik University)
  • 투고 : 2019.06.17
  • 심사 : 2019.06.27
  • 발행 : 2019.06.30

초록

실리콘 기판상에 여러 조건의 전류밀도에서 로듐 도금을 실시하였다. 직류전원의 경우 전류밀도가 증가하면 로듐 표면에 균열이 발생하였다. 잔류응력을 낮추기 위하여 펄스전류를 인가하였다. 펄스전류의 off 시간이 도금층의 잔류응력을 낮추는데 영향을 주었다. 펄스전류의 인가 주기를 5:5로 하였을 경우 균열 없는 로듐 도금층을 얻었다.

The electrodeposition of rhodium (Rh) on silicon substrate at different current conditions were investigated. The cracks were found at high current density during the direct current (DC) plating. The pulse current (PC) plating were applied to avoid the formation of cracks on the deposits. Off time in the pulse plating relieved the residual stress of the Rh deposits and consequently the current conditions for the crack-free Rh deposits were obtained. Optimum pulse current (PC) condition is 5:5 (on:off) for the crack-free Rh electroplating.

키워드

MOKRBW_2019_v26n2_51_f0001.png 이미지

Fig. 1. Surface morphology of Rd electrodeposits at DC 10 mA/cm2 for (a) 10 min (b) 20 min.

MOKRBW_2019_v26n2_51_f0002.png 이미지

Fig. 2. Surface morphology of Rd electrodeposits at different DC current densities: (a) 1 mA/cm2 (b) 2 mA/cm2 (c) 5 mA/cm2 (d) 10 mA/cm2.

MOKRBW_2019_v26n2_51_f0003.png 이미지

Fig. 3. Galvanostatic test at different current densities.

MOKRBW_2019_v26n2_51_f0004.png 이미지

Fig. 4. Potentiodynamic plot at rhodium solution.

MOKRBW_2019_v26n2_51_f0005.png 이미지

Fig. 5. Surface morphology at different pulse durations and times. Current density was 2 mA/cm2 (a) PC 7:3 and 14 min, (b) PC 7:3 and 140 min, (c) PC 5:5 and 14 min, (d) PC 5:5 and 140 min.

MOKRBW_2019_v26n2_51_f0006.png 이미지

Fig. 6. Residual stress of electrodeposits at different pulse conditions.

참고문헌

  1. F. Wang, R. Cheong, and X. Li, "MEMS Vertical Probe Cards with Ultra Densely Arrayed Metal Probes for Wafer-Level IC Testing", J. Microelectromech. Sys., 18(4), 933 (2009). https://doi.org/10.1109/JMEMS.2009.2021815
  2. B. H. Kim, H. C. Kim, S. D. Choi, K. Chun, J. B. Kim, and J. H. Kim, "A Robust MEMS Probe Card with Vertical Guide for a Fine Pitch Test", J. Micromech. Microeng., 17(7), 1350 (2007). https://doi.org/10.1088/0960-1317/17/7/018
  3. T. Itoh, K. Kataoka, and T. Suga, "Characteristics of Low Force Contact Process for MEMS Probe Cards", Sensors and Actuators A: Physical, 97, 462 (2002). https://doi.org/10.1016/S0924-4247(01)00822-6
  4. Y. Cho, T. Kuki, Y. Fukuta, H. Fujita, and B. Kim, "Fabrication of Sharp Knife-Edged Micro Probe Card Combined with Shadow Mask Deposition", Sensors and Actuators A: Physical, 114(2-3), 327 (2004). https://doi.org/10.1016/j.sna.2003.12.021
  5. B. H. Kim, and J. B. Kim, "Design and Fabrication of a Highly Manufacturable MEMS Probe Card for High Speed Testing", J. Micromech. Microeng., 18(7), 075031 (2008). https://doi.org/10.1088/0960-1317/18/7/075031
  6. H. C. Huang, S. T. Chung, S. J. Pan, W. T. Tsai, and C. S. Lin, "Microstructure Evolution and Hardening Mechanisms of Ni-P Electrodeposits", Surf. Coat. Tech., 205(7), 2097 (2007). https://doi.org/10.1016/j.surfcoat.2010.08.115
  7. T. Itoh, S. Kawamura, K. Kataoka, and T. Suga, "Electroplated Ni Microcantilever Probe with Electrostatic Actuation", Sensors and Actuators A: Physical, 123, 490 (2005). https://doi.org/10.1016/j.sna.2005.03.023
  8. N. G. Kim, and Y. B. Sun, "Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy", J. Microelectron. Packag. Soc., 24(3), 77 (2017). https://doi.org/10.6117/kmeps.2017.24.3.077
  9. B. P. Daly, and F. J. Barry, "Electrochemical Nickel-Phosphorus Alloy Formation", Inter. Mater. Rev., 48(5), 326 (2013). https://doi.org/10.1179/095066003225008482
  10. A. M. Pillai, A. Rajendra, and A. K. Shirma, "Electroplated Nickel-Phosphorous Alloy Coating: an in-depth Study of Its Preparation, Properties, and Structural Transitions", J. Coat. Tech. Resear., 9(6), 785 (2012). https://doi.org/10.1007/s11998-012-9411-0
  11. K. Y. Lee, H. J. Won, S. W. Jun, T. S. Oh, J. Y. Byun, and T. S. Oh, "Electrical Resistivity and Solder Reaction Characteristics of Ni Films Fabricated by Electroplating", J. Microelectron. Packag. Soc., 12(3), 253 (2005).
  12. Y. Li, H. Jiang, D. Wang, and H. Ge, "Effects of Saccharin and Cobalt Concentration in Electrolytic Solution on Micro Hardness of Nanocrystalline Ni-Co Alloys", Surf. Coat. Tech., 202(20), 4952 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.093
  13. L. Wang, Y. Gao, Q. Xue, H. Liy, and T. Xu, "Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits", Appl. Surf. Sci., 242(3-4), 326 (2005). https://doi.org/10.1016/j.apsusc.2004.08.033
  14. M. Zamani, A. Amadeh, and S. M. Laribaghal, "Effect of Co Content on Electrodeposition Mechanism and Mechanical Properties of Electrodeposited Ni-Co Alloy", Transactions of Nonferrous Metals Society of China, 26(2), 484 (2016). https://doi.org/10.1016/S1003-6326(16)64136-5
  15. R. Orinakova, A. Turonova, D. Kladekova, M. Galova, and R. M. Smith, "Recent Developments in the Electrodeposition of Nickel and Some Nickel-Based Alloys", J. Appl. Electrochem., 36(9), 957 (2005). https://doi.org/10.1007/s10800-006-9162-7
  16. S. H. Hassani, K. Raeissi, and M. A. Golozar, "Effects of Saccharin on the Electrodepostition of Ni-Co Nanocrystalline Coatings", J. Appl. Electrochem., 38(5), 689 (2008). https://doi.org/10.1007/s10800-008-9488-4
  17. Y. Li, H. Jiang, W. Haung, and H. Tian, "Effects of Peak Current Density on the Mechanical Properties of Nanocrystalline Ni-Co Alloys Produced by Pulse Electrodeposition", Appl. Surf. Sci., 254(21), 6865 (2008) https://doi.org/10.1016/j.apsusc.2008.04.087
  18. D. Pletcher, and R. Urbina, "Electrodeposition of Rodium Part 1. Chloride Solutions", J. Electroanal. Chem., 421(1-2), 137 (1997). https://doi.org/10.1016/S0022-0728(96)04844-9
  19. D. Pletcher, and R. Urbina, "Electrodeposition of Rhodium Part 2. Sulfate Solutions", J. Electroanal. Chem., 421(1-2), 145 (1997). https://doi.org/10.1016/S0022-0728(96)04845-0
  20. M. Arbib, B. Zhang, V. Lazarov, D. Stoychev, A. Milchev, and C. Buess-Herman, "Electrochemical Nucleation and Growth of Rhodium on Gold Substrates", J. Electroanal. Chem., 510 (1-2), 67 (2001). https://doi.org/10.1016/S0022-0728(01)00545-9
  21. R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhoes, and E. C. Pereira, "Rh Electrodeposition on Pt in Acidic Medium: a Study Using Cyclic Voltammetry and an Electrochemcial Quartz Crystal Microbalance", J. Electroanal. Chem., 569(2), 233 (2004). https://doi.org/10.1016/j.jelechem.2004.03.006
  22. A. V. Belyaev, M. A. Fedotov, and S. N. Shagabutdinova, "State of Rhodium(III) in Sulfuric Acid Solutions", Russ. J. Corrod. Chem., 33(2), 136 (2007). https://doi.org/10.1134/S107032840702011X
  23. S. Langerock, and L. Heerman, "Study of the Electrodeposition of Rhodium on Polycrystalline Gold Electrode by Quartz Microbalance and Voltammetric Techniques", J. Electrochem. Soc., 151(3), C155 (2004). https://doi.org/10.1149/1.1643071
  24. J. C. Puippe, and F. Leaman, "Theory and Practice of Pulse Plating", pp.1-11 AESFS, Orlando (1986).

피인용 문헌

  1. 나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.095